1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
// Copyright 2022 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implementation of CRCs (aka Rabin Fingerprints).
// Treats the input as a polynomial with coefficients in Z(2),
// and finds the remainder when divided by an irreducible polynomial
// of the appropriate length.
// It handles all CRC sizes from 8 to 128 bits.
// It's somewhat complicated by having separate implementations optimized for
// CRC's <=32 bits, <= 64 bits, and <= 128 bits.
// The input string is prefixed with a "1" bit, and has "degree" "0" bits
// appended to it before the remainder is found. This ensures that
// short strings are scrambled somewhat and that strings consisting
// of all nulls have a non-zero CRC.
//
// Uses the "interleaved word-by-word" method from
// "Everything we know about CRC but afraid to forget" by Andrew Kadatch
// and Bob Jenkins,
// http://crcutil.googlecode.com/files/crc-doc.1.0.pdf
//
// The idea is to compute kStride CRCs simultaneously, allowing the
// processor to more effectively use multiple execution units. Each of
// the CRCs is calculated on one word of data followed by kStride - 1
// words of zeroes; the CRC starting points are staggered by one word.
// Assuming a stride of 4 with data words "ABCDABCDABCD", the first
// CRC is over A000A000A, the second over 0B000B000B, and so on.
// The CRC of the whole data is then calculated by properly aligning the
// CRCs by appending zeroes until the data lengths agree then XORing
// the CRCs.
#include "absl/crc/internal/crc.h"
#include <cstdint>
#include "absl/base/internal/endian.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/prefetch.h"
#include "absl/crc/internal/crc_internal.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace crc_internal {
namespace {
// Constants
#if defined(__i386__) || defined(__x86_64__)
constexpr bool kNeedAlignedLoads = false;
#else
constexpr bool kNeedAlignedLoads = true;
#endif
// We express the number of zeroes as a number in base ZEROES_BASE. By
// pre-computing the zero extensions for all possible components of such an
// expression (numbers in a form a*ZEROES_BASE**b), we can calculate the
// resulting extension by multiplying the extensions for individual components
// using log_{ZEROES_BASE}(num_zeroes) polynomial multiplications. The tables of
// zero extensions contain (ZEROES_BASE - 1) * (log_{ZEROES_BASE}(64)) entries.
constexpr int ZEROES_BASE_LG = 4; // log_2(ZEROES_BASE)
constexpr int ZEROES_BASE = (1 << ZEROES_BASE_LG); // must be a power of 2
constexpr uint32_t kCrc32cPoly = 0x82f63b78;
uint32_t ReverseBits(uint32_t bits) {
bits = (bits & 0xaaaaaaaau) >> 1 | (bits & 0x55555555u) << 1;
bits = (bits & 0xccccccccu) >> 2 | (bits & 0x33333333u) << 2;
bits = (bits & 0xf0f0f0f0u) >> 4 | (bits & 0x0f0f0f0fu) << 4;
return absl::gbswap_32(bits);
}
// Polynomial long multiplication mod the polynomial of degree 32.
void PolyMultiply(uint32_t* val, uint32_t m, uint32_t poly) {
uint32_t l = *val;
uint32_t result = 0;
auto onebit = uint32_t{0x80000000u};
for (uint32_t one = onebit; one != 0; one >>= 1) {
if ((l & one) != 0) {
result ^= m;
}
if (m & 1) {
m = (m >> 1) ^ poly;
} else {
m >>= 1;
}
}
*val = result;
}
} // namespace
void CRCImpl::FillWordTable(uint32_t poly, uint32_t last, int word_size,
Uint32By256* t) {
for (int j = 0; j != word_size; j++) { // for each byte of extension....
t[j][0] = 0; // a zero has no effect
for (int i = 128; i != 0; i >>= 1) { // fill in entries for powers of 2
if (j == 0 && i == 128) {
t[j][i] = last; // top bit in last byte is given
} else {
// each successive power of two is derived from the previous
// one, either in this table, or the last table
uint32_t pred;
if (i == 128) {
pred = t[j - 1][1];
} else {
pred = t[j][i << 1];
}
// Advance the CRC by one bit (multiply by X, and take remainder
// through one step of polynomial long division)
if (pred & 1) {
t[j][i] = (pred >> 1) ^ poly;
} else {
t[j][i] = pred >> 1;
}
}
}
// CRCs have the property that CRC(a xor b) == CRC(a) xor CRC(b)
// so we can make all the tables for non-powers of two by
// xoring previously created entries.
for (int i = 2; i != 256; i <<= 1) {
for (int k = i + 1; k != (i << 1); k++) {
t[j][k] = t[j][i] ^ t[j][k - i];
}
}
}
}
int CRCImpl::FillZeroesTable(uint32_t poly, Uint32By256* t) {
uint32_t inc = 1;
inc <<= 31;
// Extend by one zero bit. We know degree > 1 so (inc & 1) == 0.
inc >>= 1;
// Now extend by 2, 4, and 8 bits, so now `inc` is extended by one zero byte.
for (int i = 0; i < 3; ++i) {
PolyMultiply(&inc, inc, poly);
}
int j = 0;
for (uint64_t inc_len = 1; inc_len != 0; inc_len <<= ZEROES_BASE_LG) {
// Every entry in the table adds an additional inc_len zeroes.
uint32_t v = inc;
for (int a = 1; a != ZEROES_BASE; a++) {
t[0][j] = v;
PolyMultiply(&v, inc, poly);
j++;
}
inc = v;
}
ABSL_RAW_CHECK(j <= 256, "");
return j;
}
// Internal version of the "constructor".
CRCImpl* CRCImpl::NewInternal() {
// Find an accelearated implementation first.
CRCImpl* result = TryNewCRC32AcceleratedX86ARMCombined();
// Fall back to generic implementions if no acceleration is available.
if (result == nullptr) {
result = new CRC32();
}
result->InitTables();
return result;
}
// The CRC of the empty string is always the CRC polynomial itself.
void CRCImpl::Empty(uint32_t* crc) const { *crc = kCrc32cPoly; }
// The 32-bit implementation
void CRC32::InitTables() {
// Compute the table for extending a CRC by one byte.
Uint32By256* t = new Uint32By256[4];
FillWordTable(kCrc32cPoly, kCrc32cPoly, 1, t);
for (int i = 0; i != 256; i++) {
this->table0_[i] = t[0][i];
}
// Construct a table for updating the CRC by 4 bytes data followed by
// 12 bytes of zeroes.
//
// Note: the data word size could be larger than the CRC size; it might
// be slightly faster to use a 64-bit data word, but doing so doubles the
// table size.
uint32_t last = kCrc32cPoly;
const size_t size = 12;
for (size_t i = 0; i < size; ++i) {
last = (last >> 8) ^ this->table0_[last & 0xff];
}
FillWordTable(kCrc32cPoly, last, 4, t);
for (size_t b = 0; b < 4; ++b) {
for (int i = 0; i < 256; ++i) {
this->table_[b][i] = t[b][i];
}
}
int j = FillZeroesTable(kCrc32cPoly, t);
ABSL_RAW_CHECK(j <= static_cast<int>(ABSL_ARRAYSIZE(this->zeroes_)), "");
for (int i = 0; i < j; i++) {
this->zeroes_[i] = t[0][i];
}
delete[] t;
// Build up tables for _reversing_ the operation of doing CRC operations on
// zero bytes.
// In C++, extending `crc` by a single zero bit is done by the following:
// (A) bool low_bit_set = (crc & 1);
// crc >>= 1;
// if (low_bit_set) crc ^= kCrc32cPoly;
//
// In particular note that the high bit of `crc` after this operation will be
// set if and only if the low bit of `crc` was set before it. This means that
// no information is lost, and the operation can be reversed, as follows:
// (B) bool high_bit_set = (crc & 0x80000000u);
// if (high_bit_set) crc ^= kCrc32cPoly;
// crc <<= 1;
// if (high_bit_set) crc ^= 1;
//
// Or, equivalently:
// (C) bool high_bit_set = (crc & 0x80000000u);
// crc <<= 1;
// if (high_bit_set) crc ^= ((kCrc32cPoly << 1) ^ 1);
//
// The last observation is, if we store our checksums in variable `rcrc`,
// with order of the bits reversed, the inverse operation becomes:
// (D) bool low_bit_set = (rcrc & 1);
// rcrc >>= 1;
// if (low_bit_set) rcrc ^= ReverseBits((kCrc32cPoly << 1) ^ 1)
//
// This is the same algorithm (A) that we started with, only with a different
// polynomial bit pattern. This means that by building up our tables with
// this alternate polynomial, we can apply the CRC algorithms to a
// bit-reversed CRC checksum to perform inverse zero-extension.
const uint32_t kCrc32cUnextendPoly =
ReverseBits(static_cast<uint32_t>((kCrc32cPoly << 1) ^ 1));
FillWordTable(kCrc32cUnextendPoly, kCrc32cUnextendPoly, 1, &reverse_table0_);
j = FillZeroesTable(kCrc32cUnextendPoly, &reverse_zeroes_);
ABSL_RAW_CHECK(j <= static_cast<int>(ABSL_ARRAYSIZE(this->reverse_zeroes_)),
"");
}
void CRC32::Extend(uint32_t* crc, const void* bytes, size_t length) const {
const uint8_t* p = static_cast<const uint8_t*>(bytes);
const uint8_t* e = p + length;
uint32_t l = *crc;
auto step_one_byte = [this, &p, &l]() {
int c = (l & 0xff) ^ *p++;
l = this->table0_[c] ^ (l >> 8);
};
if (kNeedAlignedLoads) {
// point x at first 4-byte aligned byte in string. this might be past the
// end of the string.
const uint8_t* x = RoundUp<4>(p);
if (x <= e) {
// Process bytes until finished or p is 4-byte aligned
while (p != x) {
step_one_byte();
}
}
}
const size_t kSwathSize = 16;
if (static_cast<size_t>(e - p) >= kSwathSize) {
// Load one swath of data into the operating buffers.
uint32_t buf0 = absl::little_endian::Load32(p) ^ l;
uint32_t buf1 = absl::little_endian::Load32(p + 4);
uint32_t buf2 = absl::little_endian::Load32(p + 8);
uint32_t buf3 = absl::little_endian::Load32(p + 12);
p += kSwathSize;
// Increment a CRC value by a "swath"; this combines the four bytes
// starting at `ptr` and twelve zero bytes, so that four CRCs can be
// built incrementally and combined at the end.
const auto step_swath = [this](uint32_t crc_in, const std::uint8_t* ptr) {
return absl::little_endian::Load32(ptr) ^
this->table_[3][crc_in & 0xff] ^
this->table_[2][(crc_in >> 8) & 0xff] ^
this->table_[1][(crc_in >> 16) & 0xff] ^
this->table_[0][crc_in >> 24];
};
// Run one CRC calculation step over all swaths in one 16-byte stride
const auto step_stride = [&]() {
buf0 = step_swath(buf0, p);
buf1 = step_swath(buf1, p + 4);
buf2 = step_swath(buf2, p + 8);
buf3 = step_swath(buf3, p + 12);
p += 16;
};
// Process kStride interleaved swaths through the data in parallel.
while ((e - p) > kPrefetchHorizon) {
PrefetchToLocalCacheNta(
reinterpret_cast<const void*>(p + kPrefetchHorizon));
// Process 64 bytes at a time
step_stride();
step_stride();
step_stride();
step_stride();
}
while (static_cast<size_t>(e - p) >= kSwathSize) {
step_stride();
}
// Now advance one word at a time as far as possible. This isn't worth
// doing if we have word-advance tables.
while (static_cast<size_t>(e - p) >= 4) {
buf0 = step_swath(buf0, p);
uint32_t tmp = buf0;
buf0 = buf1;
buf1 = buf2;
buf2 = buf3;
buf3 = tmp;
p += 4;
}
// Combine the results from the different swaths. This is just a CRC
// on the data values in the bufX words.
auto combine_one_word = [this](uint32_t crc_in, uint32_t w) {
w ^= crc_in;
for (size_t i = 0; i < 4; ++i) {
w = (w >> 8) ^ this->table0_[w & 0xff];
}
return w;
};
l = combine_one_word(0, buf0);
l = combine_one_word(l, buf1);
l = combine_one_word(l, buf2);
l = combine_one_word(l, buf3);
}
// Process the last few bytes
while (p != e) {
step_one_byte();
}
*crc = l;
}
void CRC32::ExtendByZeroesImpl(uint32_t* crc, size_t length,
const uint32_t zeroes_table[256],
const uint32_t poly_table[256]) {
if (length != 0) {
uint32_t l = *crc;
// For each ZEROES_BASE_LG bits in length
// (after the low-order bits have been removed)
// we lookup the appropriate polynomial in the zeroes_ array
// and do a polynomial long multiplication (mod the CRC polynomial)
// to extend the CRC by the appropriate number of bits.
for (int i = 0; length != 0;
i += ZEROES_BASE - 1, length >>= ZEROES_BASE_LG) {
int c = length & (ZEROES_BASE - 1); // pick next ZEROES_BASE_LG bits
if (c != 0) { // if they are not zero,
// multiply by entry in table
// Build a table to aid in multiplying 2 bits at a time.
// It takes too long to build tables for more bits.
uint64_t m = zeroes_table[c + i - 1];
m <<= 1;
uint64_t m2 = m << 1;
uint64_t mtab[4] = {0, m, m2, m2 ^ m};
// Do the multiply one byte at a time.
uint64_t result = 0;
for (int x = 0; x < 32; x += 8) {
// The carry-less multiply.
result ^= mtab[l & 3] ^ (mtab[(l >> 2) & 3] << 2) ^
(mtab[(l >> 4) & 3] << 4) ^ (mtab[(l >> 6) & 3] << 6);
l >>= 8;
// Reduce modulo the polynomial
result = (result >> 8) ^ poly_table[result & 0xff];
}
l = static_cast<uint32_t>(result);
}
}
*crc = l;
}
}
void CRC32::ExtendByZeroes(uint32_t* crc, size_t length) const {
return CRC32::ExtendByZeroesImpl(crc, length, zeroes_, table0_);
}
void CRC32::UnextendByZeroes(uint32_t* crc, size_t length) const {
// See the comment in CRC32::InitTables() for an explanation of the algorithm
// below.
*crc = ReverseBits(*crc);
ExtendByZeroesImpl(crc, length, reverse_zeroes_, reverse_table0_);
*crc = ReverseBits(*crc);
}
void CRC32::Scramble(uint32_t* crc) const {
// Rotate by near half the word size plus 1. See the scramble comment in
// crc_internal.h for an explanation.
constexpr int scramble_rotate = (32 / 2) + 1;
*crc = RotateRight<uint32_t>(static_cast<unsigned int>(*crc + kScrambleLo),
32, scramble_rotate) &
MaskOfLength<uint32_t>(32);
}
void CRC32::Unscramble(uint32_t* crc) const {
constexpr int scramble_rotate = (32 / 2) + 1;
uint64_t rotated = RotateRight<uint32_t>(static_cast<unsigned int>(*crc), 32,
32 - scramble_rotate);
*crc = (rotated - kScrambleLo) & MaskOfLength<uint32_t>(32);
}
// Constructor and destructor for base class CRC.
CRC::~CRC() {}
CRC::CRC() {}
// The "constructor" for a CRC32C with a standard polynomial.
CRC* CRC::Crc32c() {
static CRC* singleton = CRCImpl::NewInternal();
return singleton;
}
// This Concat implementation works for arbitrary polynomials.
void CRC::Concat(uint32_t* px, uint32_t y, size_t ylen) {
// https://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks
// The CRC of a message M is the remainder of polynomial divison modulo G,
// where the coefficient arithmetic is performed modulo 2 (so +/- are XOR):
// R(x) = M(x) x**n (mod G)
// (n is the degree of G)
// In practice, we use an initial value A and a bitmask B to get
// R = (A ^ B)x**|M| ^ Mx**n ^ B (mod G)
// If M is the concatenation of two strings S and T, and Z is the string of
// len(T) 0s, then the remainder CRC(ST) can be expressed as:
// R = (A ^ B)x**|ST| ^ STx**n ^ B
// = (A ^ B)x**|SZ| ^ SZx**n ^ B ^ Tx**n
// = CRC(SZ) ^ Tx**n
// CRC(Z) = (A ^ B)x**|T| ^ B
// CRC(T) = (A ^ B)x**|T| ^ Tx**n ^ B
// So R = CRC(SZ) ^ CRC(Z) ^ CRC(T)
//
// And further, since CRC(SZ) = Extend(CRC(S), Z),
// CRC(SZ) ^ CRC(Z) = Extend(CRC(S) ^ CRC(''), Z).
uint32_t z;
uint32_t t;
Empty(&z);
t = *px ^ z;
ExtendByZeroes(&t, ylen);
*px = t ^ y;
}
} // namespace crc_internal
ABSL_NAMESPACE_END
} // namespace absl
|