1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
// Copyright 2022 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/crc/internal/cpu_detect.h"
#include <cstdint>
#include <string>
#include "absl/base/config.h"
#if defined(__aarch64__) && defined(__linux__)
#include <asm/hwcap.h>
#include <sys/auxv.h>
#endif
#if defined(_WIN32) || defined(_WIN64)
#include <intrin.h>
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace crc_internal {
#if defined(__x86_64__) || defined(_M_X64)
namespace {
#if !defined(_WIN32) && !defined(_WIN64)
// MSVC defines this function for us.
// https://learn.microsoft.com/en-us/cpp/intrinsics/cpuid-cpuidex
static void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile("cpuid \n\t"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
}
#endif // !defined(_WIN32) && !defined(_WIN64)
enum class Vendor {
kUnknown,
kIntel,
kAmd,
};
Vendor GetVendor() {
// Get the vendor string (issue CPUID with eax = 0).
int cpu_info[4];
__cpuid(cpu_info, 0);
std::string vendor;
vendor.append(reinterpret_cast<char*>(&cpu_info[1]), 4);
vendor.append(reinterpret_cast<char*>(&cpu_info[3]), 4);
vendor.append(reinterpret_cast<char*>(&cpu_info[2]), 4);
if (vendor == "GenuineIntel") {
return Vendor::kIntel;
} else if (vendor == "AuthenticAMD") {
return Vendor::kAmd;
} else {
return Vendor::kUnknown;
}
}
CpuType GetIntelCpuType() {
// To get general information and extended features we send eax = 1 and
// ecx = 0 to cpuid. The response is returned in eax, ebx, ecx and edx.
// (See Intel 64 and IA-32 Architectures Software Developer's Manual
// Volume 2A: Instruction Set Reference, A-M CPUID).
// https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
// https://learn.microsoft.com/en-us/cpp/intrinsics/cpuid-cpuidex
int cpu_info[4];
__cpuid(cpu_info, 1);
// Response in eax bits as follows:
// 0-3 (stepping id)
// 4-7 (model number),
// 8-11 (family code),
// 12-13 (processor type),
// 16-19 (extended model)
// 20-27 (extended family)
int family = (cpu_info[0] >> 8) & 0x0f;
int model_num = (cpu_info[0] >> 4) & 0x0f;
int ext_family = (cpu_info[0] >> 20) & 0xff;
int ext_model_num = (cpu_info[0] >> 16) & 0x0f;
int brand_id = cpu_info[1] & 0xff;
// Process the extended family and model info if necessary
if (family == 0x0f) {
family += ext_family;
}
if (family == 0x0f || family == 0x6) {
model_num += (ext_model_num << 4);
}
switch (brand_id) {
case 0: // no brand ID, so parse CPU family/model
switch (family) {
case 6: // Most PentiumIII processors are in this category
switch (model_num) {
case 0x2c: // Westmere: Gulftown
return CpuType::kIntelWestmere;
case 0x2d: // Sandybridge
return CpuType::kIntelSandybridge;
case 0x3e: // Ivybridge
return CpuType::kIntelIvybridge;
case 0x3c: // Haswell (client)
case 0x3f: // Haswell
return CpuType::kIntelHaswell;
case 0x4f: // Broadwell
case 0x56: // BroadwellDE
return CpuType::kIntelBroadwell;
case 0x55: // Skylake Xeon
if ((cpu_info[0] & 0x0f) < 5) { // stepping < 5 is skylake
return CpuType::kIntelSkylakeXeon;
} else { // stepping >= 5 is cascadelake
return CpuType::kIntelCascadelakeXeon;
}
case 0x5e: // Skylake (client)
return CpuType::kIntelSkylake;
default:
return CpuType::kUnknown;
}
default:
return CpuType::kUnknown;
}
default:
return CpuType::kUnknown;
}
}
CpuType GetAmdCpuType() {
// To get general information and extended features we send eax = 1 and
// ecx = 0 to cpuid. The response is returned in eax, ebx, ecx and edx.
// (See Intel 64 and IA-32 Architectures Software Developer's Manual
// Volume 2A: Instruction Set Reference, A-M CPUID).
// https://learn.microsoft.com/en-us/cpp/intrinsics/cpuid-cpuidex
int cpu_info[4];
__cpuid(cpu_info, 1);
// Response in eax bits as follows:
// 0-3 (stepping id)
// 4-7 (model number),
// 8-11 (family code),
// 12-13 (processor type),
// 16-19 (extended model)
// 20-27 (extended family)
int family = (cpu_info[0] >> 8) & 0x0f;
int model_num = (cpu_info[0] >> 4) & 0x0f;
int ext_family = (cpu_info[0] >> 20) & 0xff;
int ext_model_num = (cpu_info[0] >> 16) & 0x0f;
if (family == 0x0f) {
family += ext_family;
model_num += (ext_model_num << 4);
}
switch (family) {
case 0x17:
switch (model_num) {
case 0x0: // Stepping Ax
case 0x1: // Stepping Bx
return CpuType::kAmdNaples;
case 0x30: // Stepping Ax
case 0x31: // Stepping Bx
return CpuType::kAmdRome;
default:
return CpuType::kUnknown;
}
break;
case 0x19:
switch (model_num) {
case 0x1: // Stepping B0
return CpuType::kAmdMilan;
default:
return CpuType::kUnknown;
}
break;
default:
return CpuType::kUnknown;
}
}
} // namespace
CpuType GetCpuType() {
switch (GetVendor()) {
case Vendor::kIntel:
return GetIntelCpuType();
case Vendor::kAmd:
return GetAmdCpuType();
default:
return CpuType::kUnknown;
}
}
bool SupportsArmCRC32PMULL() { return false; }
#elif defined(__aarch64__) && defined(__linux__)
#define ABSL_INTERNAL_AARCH64_ID_REG_READ(id, val) \
asm("mrs %0, " #id : "=r"(val))
CpuType GetCpuType() {
// MIDR_EL1 is not visible to EL0, however the access will be emulated by
// linux if AT_HWCAP has HWCAP_CPUID set.
//
// This method will be unreliable on heterogeneous computing systems (ex:
// big.LITTLE) since the value of MIDR_EL1 will change based on the calling
// thread.
uint64_t hwcaps = getauxval(AT_HWCAP);
if (hwcaps & HWCAP_CPUID) {
uint64_t midr = 0;
ABSL_INTERNAL_AARCH64_ID_REG_READ(MIDR_EL1, midr);
uint32_t implementer = (midr >> 24) & 0xff;
uint32_t part_number = (midr >> 4) & 0xfff;
if (implementer == 0x41 && part_number == 0xd0c) {
return CpuType::kArmNeoverseN1;
}
}
return CpuType::kUnknown;
}
bool SupportsArmCRC32PMULL() {
uint64_t hwcaps = getauxval(AT_HWCAP);
return (hwcaps & HWCAP_CRC32) && (hwcaps & HWCAP_PMULL);
}
#else
CpuType GetCpuType() { return CpuType::kUnknown; }
bool SupportsArmCRC32PMULL() { return false; }
#endif
} // namespace crc_internal
ABSL_NAMESPACE_END
} // namespace absl
|