1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <array>
#include <cmath>
#include <numeric>
#include <random>
#include <tuple>
#include <utility>
#include <vector>
#include "absl/base/internal/raw_logging.h"
#include "absl/container/internal/hash_function_defaults.h"
#include "absl/container/internal/raw_hash_set.h"
#include "absl/strings/str_format.h"
#include "benchmark/benchmark.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
struct RawHashSetTestOnlyAccess {
template <typename C>
static auto GetSlots(const C& c) -> decltype(c.slots_) {
return c.slots_;
}
};
namespace {
struct IntPolicy {
using slot_type = int64_t;
using key_type = int64_t;
using init_type = int64_t;
static void construct(void*, int64_t* slot, int64_t v) { *slot = v; }
static void destroy(void*, int64_t*) {}
static void transfer(void*, int64_t* new_slot, int64_t* old_slot) {
*new_slot = *old_slot;
}
static int64_t& element(slot_type* slot) { return *slot; }
template <class F>
static auto apply(F&& f, int64_t x) -> decltype(std::forward<F>(f)(x, x)) {
return std::forward<F>(f)(x, x);
}
};
class StringPolicy {
template <class F, class K, class V,
class = typename std::enable_if<
std::is_convertible<const K&, absl::string_view>::value>::type>
decltype(std::declval<F>()(
std::declval<const absl::string_view&>(), std::piecewise_construct,
std::declval<std::tuple<K>>(),
std::declval<V>())) static apply_impl(F&& f,
std::pair<std::tuple<K>, V> p) {
const absl::string_view& key = std::get<0>(p.first);
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
std::move(p.second));
}
public:
struct slot_type {
struct ctor {};
template <class... Ts>
slot_type(ctor, Ts&&... ts) : pair(std::forward<Ts>(ts)...) {}
std::pair<std::string, std::string> pair;
};
using key_type = std::string;
using init_type = std::pair<std::string, std::string>;
template <class allocator_type, class... Args>
static void construct(allocator_type* alloc, slot_type* slot, Args... args) {
std::allocator_traits<allocator_type>::construct(
*alloc, slot, typename slot_type::ctor(), std::forward<Args>(args)...);
}
template <class allocator_type>
static void destroy(allocator_type* alloc, slot_type* slot) {
std::allocator_traits<allocator_type>::destroy(*alloc, slot);
}
template <class allocator_type>
static void transfer(allocator_type* alloc, slot_type* new_slot,
slot_type* old_slot) {
construct(alloc, new_slot, std::move(old_slot->pair));
destroy(alloc, old_slot);
}
static std::pair<std::string, std::string>& element(slot_type* slot) {
return slot->pair;
}
template <class F, class... Args>
static auto apply(F&& f, Args&&... args)
-> decltype(apply_impl(std::forward<F>(f),
PairArgs(std::forward<Args>(args)...))) {
return apply_impl(std::forward<F>(f),
PairArgs(std::forward<Args>(args)...));
}
};
struct StringHash : container_internal::hash_default_hash<absl::string_view> {
using is_transparent = void;
};
struct StringEq : std::equal_to<absl::string_view> {
using is_transparent = void;
};
struct StringTable
: raw_hash_set<StringPolicy, StringHash, StringEq, std::allocator<int>> {
using Base = typename StringTable::raw_hash_set;
StringTable() {}
using Base::Base;
};
struct IntTable
: raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
std::equal_to<int64_t>, std::allocator<int64_t>> {
using Base = typename IntTable::raw_hash_set;
IntTable() {}
using Base::Base;
};
struct string_generator {
template <class RNG>
std::string operator()(RNG& rng) const {
std::string res;
res.resize(12);
std::uniform_int_distribution<uint32_t> printable_ascii(0x20, 0x7E);
std::generate(res.begin(), res.end(), [&] { return printable_ascii(rng); });
return res;
}
size_t size;
};
// Model a cache in steady state.
//
// On a table of size N, keep deleting the LRU entry and add a random one.
void BM_CacheInSteadyState(benchmark::State& state) {
std::random_device rd;
std::mt19937 rng(rd());
string_generator gen{12};
StringTable t;
std::deque<std::string> keys;
while (t.size() < state.range(0)) {
auto x = t.emplace(gen(rng), gen(rng));
if (x.second) keys.push_back(x.first->first);
}
ABSL_RAW_CHECK(state.range(0) >= 10, "");
while (state.KeepRunning()) {
// Some cache hits.
std::deque<std::string>::const_iterator it;
for (int i = 0; i != 90; ++i) {
if (i % 10 == 0) it = keys.end();
::benchmark::DoNotOptimize(t.find(*--it));
}
// Some cache misses.
for (int i = 0; i != 10; ++i) ::benchmark::DoNotOptimize(t.find(gen(rng)));
ABSL_RAW_CHECK(t.erase(keys.front()), keys.front().c_str());
keys.pop_front();
while (true) {
auto x = t.emplace(gen(rng), gen(rng));
if (x.second) {
keys.push_back(x.first->first);
break;
}
}
}
state.SetItemsProcessed(state.iterations());
state.SetLabel(absl::StrFormat("load_factor=%.2f", t.load_factor()));
}
template <typename Benchmark>
void CacheInSteadyStateArgs(Benchmark* bm) {
// The default.
const float max_load_factor = 0.875;
// When the cache is at the steady state, the probe sequence will equal
// capacity if there is no reclamation of deleted slots. Pick a number large
// enough to make the benchmark slow for that case.
const size_t capacity = 1 << 10;
// Check N data points to cover load factors in [0.4, 0.8).
const size_t kNumPoints = 10;
for (size_t i = 0; i != kNumPoints; ++i)
bm->Arg(std::ceil(
capacity * (max_load_factor + i * max_load_factor / kNumPoints) / 2));
}
BENCHMARK(BM_CacheInSteadyState)->Apply(CacheInSteadyStateArgs);
void BM_EndComparison(benchmark::State& state) {
StringTable t = {{"a", "a"}, {"b", "b"}};
auto it = t.begin();
for (auto i : state) {
benchmark::DoNotOptimize(t);
benchmark::DoNotOptimize(it);
benchmark::DoNotOptimize(it != t.end());
}
}
BENCHMARK(BM_EndComparison);
void BM_Iteration(benchmark::State& state) {
std::random_device rd;
std::mt19937 rng(rd());
string_generator gen{12};
StringTable t;
size_t capacity = state.range(0);
size_t size = state.range(1);
t.reserve(capacity);
while (t.size() < size) {
t.emplace(gen(rng), gen(rng));
}
for (auto i : state) {
benchmark::DoNotOptimize(t);
for (auto it = t.begin(); it != t.end(); ++it) {
benchmark::DoNotOptimize(*it);
}
}
}
BENCHMARK(BM_Iteration)
->ArgPair(1, 1)
->ArgPair(2, 2)
->ArgPair(4, 4)
->ArgPair(7, 7)
->ArgPair(10, 10)
->ArgPair(15, 15)
->ArgPair(16, 16)
->ArgPair(54, 54)
->ArgPair(100, 100)
->ArgPair(400, 400)
// empty
->ArgPair(0, 0)
->ArgPair(10, 0)
->ArgPair(100, 0)
->ArgPair(1000, 0)
->ArgPair(10000, 0)
// sparse
->ArgPair(100, 1)
->ArgPair(1000, 10);
void BM_CopyCtorSparseInt(benchmark::State& state) {
std::random_device rd;
std::mt19937 rng(rd());
IntTable t;
std::uniform_int_distribution<uint64_t> dist(0, ~uint64_t{});
size_t size = state.range(0);
t.reserve(size * 10);
while (t.size() < size) {
t.emplace(dist(rng));
}
for (auto i : state) {
IntTable t2 = t;
benchmark::DoNotOptimize(t2);
}
}
BENCHMARK(BM_CopyCtorSparseInt)->Range(128, 4096);
void BM_CopyCtorInt(benchmark::State& state) {
std::random_device rd;
std::mt19937 rng(rd());
IntTable t;
std::uniform_int_distribution<uint64_t> dist(0, ~uint64_t{});
size_t size = state.range(0);
while (t.size() < size) {
t.emplace(dist(rng));
}
for (auto i : state) {
IntTable t2 = t;
benchmark::DoNotOptimize(t2);
}
}
BENCHMARK(BM_CopyCtorInt)->Range(128, 4096);
void BM_CopyCtorString(benchmark::State& state) {
std::random_device rd;
std::mt19937 rng(rd());
StringTable t;
std::uniform_int_distribution<uint64_t> dist(0, ~uint64_t{});
size_t size = state.range(0);
while (t.size() < size) {
t.emplace(std::to_string(dist(rng)), std::to_string(dist(rng)));
}
for (auto i : state) {
StringTable t2 = t;
benchmark::DoNotOptimize(t2);
}
}
BENCHMARK(BM_CopyCtorString)->Range(128, 4096);
void BM_CopyAssign(benchmark::State& state) {
std::random_device rd;
std::mt19937 rng(rd());
IntTable t;
std::uniform_int_distribution<uint64_t> dist(0, ~uint64_t{});
while (t.size() < state.range(0)) {
t.emplace(dist(rng));
}
IntTable t2;
for (auto _ : state) {
t2 = t;
benchmark::DoNotOptimize(t2);
}
}
BENCHMARK(BM_CopyAssign)->Range(128, 4096);
void BM_RangeCtor(benchmark::State& state) {
std::random_device rd;
std::mt19937 rng(rd());
std::uniform_int_distribution<uint64_t> dist(0, ~uint64_t{});
std::vector<int> values;
const size_t desired_size = state.range(0);
while (values.size() < desired_size) {
values.emplace_back(dist(rng));
}
for (auto unused : state) {
IntTable t{values.begin(), values.end()};
benchmark::DoNotOptimize(t);
}
}
BENCHMARK(BM_RangeCtor)->Range(128, 65536);
void BM_NoOpReserveIntTable(benchmark::State& state) {
IntTable t;
t.reserve(100000);
for (auto _ : state) {
benchmark::DoNotOptimize(t);
t.reserve(100000);
}
}
BENCHMARK(BM_NoOpReserveIntTable);
void BM_NoOpReserveStringTable(benchmark::State& state) {
StringTable t;
t.reserve(100000);
for (auto _ : state) {
benchmark::DoNotOptimize(t);
t.reserve(100000);
}
}
BENCHMARK(BM_NoOpReserveStringTable);
void BM_ReserveIntTable(benchmark::State& state) {
int reserve_size = state.range(0);
for (auto _ : state) {
state.PauseTiming();
IntTable t;
state.ResumeTiming();
benchmark::DoNotOptimize(t);
t.reserve(reserve_size);
}
}
BENCHMARK(BM_ReserveIntTable)->Range(128, 4096);
void BM_ReserveStringTable(benchmark::State& state) {
int reserve_size = state.range(0);
for (auto _ : state) {
state.PauseTiming();
StringTable t;
state.ResumeTiming();
benchmark::DoNotOptimize(t);
t.reserve(reserve_size);
}
}
BENCHMARK(BM_ReserveStringTable)->Range(128, 4096);
// Like std::iota, except that ctrl_t doesn't support operator++.
template <typename CtrlIter>
void Iota(CtrlIter begin, CtrlIter end, int value) {
for (; begin != end; ++begin, ++value) {
*begin = static_cast<ctrl_t>(value);
}
}
void BM_Group_Match(benchmark::State& state) {
std::array<ctrl_t, Group::kWidth> group;
Iota(group.begin(), group.end(), -4);
Group g{group.data()};
h2_t h = 1;
for (auto _ : state) {
::benchmark::DoNotOptimize(h);
::benchmark::DoNotOptimize(g);
::benchmark::DoNotOptimize(g.Match(h));
}
}
BENCHMARK(BM_Group_Match);
void BM_Group_MaskEmpty(benchmark::State& state) {
std::array<ctrl_t, Group::kWidth> group;
Iota(group.begin(), group.end(), -4);
Group g{group.data()};
for (auto _ : state) {
::benchmark::DoNotOptimize(g);
::benchmark::DoNotOptimize(g.MaskEmpty());
}
}
BENCHMARK(BM_Group_MaskEmpty);
void BM_Group_MaskEmptyOrDeleted(benchmark::State& state) {
std::array<ctrl_t, Group::kWidth> group;
Iota(group.begin(), group.end(), -4);
Group g{group.data()};
for (auto _ : state) {
::benchmark::DoNotOptimize(g);
::benchmark::DoNotOptimize(g.MaskEmptyOrDeleted());
}
}
BENCHMARK(BM_Group_MaskEmptyOrDeleted);
void BM_Group_CountLeadingEmptyOrDeleted(benchmark::State& state) {
std::array<ctrl_t, Group::kWidth> group;
Iota(group.begin(), group.end(), -2);
Group g{group.data()};
for (auto _ : state) {
::benchmark::DoNotOptimize(g);
::benchmark::DoNotOptimize(g.CountLeadingEmptyOrDeleted());
}
}
BENCHMARK(BM_Group_CountLeadingEmptyOrDeleted);
void BM_Group_MatchFirstEmptyOrDeleted(benchmark::State& state) {
std::array<ctrl_t, Group::kWidth> group;
Iota(group.begin(), group.end(), -2);
Group g{group.data()};
for (auto _ : state) {
::benchmark::DoNotOptimize(g);
::benchmark::DoNotOptimize(g.MaskEmptyOrDeleted().LowestBitSet());
}
}
BENCHMARK(BM_Group_MatchFirstEmptyOrDeleted);
void BM_DropDeletes(benchmark::State& state) {
constexpr size_t capacity = (1 << 20) - 1;
std::vector<ctrl_t> ctrl(capacity + 1 + Group::kWidth);
ctrl[capacity] = ctrl_t::kSentinel;
std::vector<ctrl_t> pattern = {ctrl_t::kEmpty, static_cast<ctrl_t>(2),
ctrl_t::kDeleted, static_cast<ctrl_t>(2),
ctrl_t::kEmpty, static_cast<ctrl_t>(1),
ctrl_t::kDeleted};
for (size_t i = 0; i != capacity; ++i) {
ctrl[i] = pattern[i % pattern.size()];
}
while (state.KeepRunning()) {
state.PauseTiming();
std::vector<ctrl_t> ctrl_copy = ctrl;
state.ResumeTiming();
ConvertDeletedToEmptyAndFullToDeleted(ctrl_copy.data(), capacity);
::benchmark::DoNotOptimize(ctrl_copy[capacity]);
}
}
BENCHMARK(BM_DropDeletes);
void BM_Resize(benchmark::State& state) {
// For now just measure a small cheap hash table since we
// are mostly interested in the overhead of type-erasure
// in resize().
constexpr int kElements = 64;
const int kCapacity = kElements * 2;
IntTable table;
for (int i = 0; i < kElements; i++) {
table.insert(i);
}
for (auto unused : state) {
table.rehash(0);
table.rehash(kCapacity);
}
}
BENCHMARK(BM_Resize);
} // namespace
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
// These methods are here to make it easy to examine the assembly for targeted
// parts of the API.
auto CodegenAbslRawHashSetInt64Find(absl::container_internal::IntTable* table,
int64_t key) -> decltype(table->find(key)) {
return table->find(key);
}
bool CodegenAbslRawHashSetInt64FindNeEnd(
absl::container_internal::IntTable* table, int64_t key) {
return table->find(key) != table->end();
}
// This is useful because the find isn't inlined but the iterator comparison is.
bool CodegenAbslRawHashSetStringFindNeEnd(
absl::container_internal::StringTable* table, const std::string& key) {
return table->find(key) != table->end();
}
auto CodegenAbslRawHashSetInt64Insert(absl::container_internal::IntTable* table,
int64_t key)
-> decltype(table->insert(key)) {
return table->insert(key);
}
bool CodegenAbslRawHashSetInt64Contains(
absl::container_internal::IntTable* table, int64_t key) {
return table->contains(key);
}
void CodegenAbslRawHashSetInt64Iterate(
absl::container_internal::IntTable* table) {
for (auto x : *table) benchmark::DoNotOptimize(x);
}
int odr =
(::benchmark::DoNotOptimize(std::make_tuple(
&CodegenAbslRawHashSetInt64Find, &CodegenAbslRawHashSetInt64FindNeEnd,
&CodegenAbslRawHashSetStringFindNeEnd,
&CodegenAbslRawHashSetInt64Insert, &CodegenAbslRawHashSetInt64Contains,
&CodegenAbslRawHashSetInt64Iterate)),
1);
|