summaryrefslogtreecommitdiff
path: root/absl/container/internal/raw_hash_set.h
blob: ea912f8305ff698d1282a611f16eea28cfafe8de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// An open-addressing
// hashtable with quadratic probing.
//
// This is a low level hashtable on top of which different interfaces can be
// implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
//
// The table interface is similar to that of std::unordered_set. Notable
// differences are that most member functions support heterogeneous keys when
// BOTH the hash and eq functions are marked as transparent. They do so by
// providing a typedef called `is_transparent`.
//
// When heterogeneous lookup is enabled, functions that take key_type act as if
// they have an overload set like:
//
//   iterator find(const key_type& key);
//   template <class K>
//   iterator find(const K& key);
//
//   size_type erase(const key_type& key);
//   template <class K>
//   size_type erase(const K& key);
//
//   std::pair<iterator, iterator> equal_range(const key_type& key);
//   template <class K>
//   std::pair<iterator, iterator> equal_range(const K& key);
//
// When heterogeneous lookup is disabled, only the explicit `key_type` overloads
// exist.
//
// find() also supports passing the hash explicitly:
//
//   iterator find(const key_type& key, size_t hash);
//   template <class U>
//   iterator find(const U& key, size_t hash);
//
// In addition the pointer to element and iterator stability guarantees are
// weaker: all iterators and pointers are invalidated after a new element is
// inserted.
//
// IMPLEMENTATION DETAILS
//
// # Table Layout
//
// A raw_hash_set's backing array consists of control bytes followed by slots
// that may or may not contain objects.
//
// The layout of the backing array, for `capacity` slots, is thus, as a
// pseudo-struct:
//
//   struct BackingArray {
//     // Control bytes for the "real" slots.
//     ctrl_t ctrl[capacity];
//     // Always `ctrl_t::kSentinel`. This is used by iterators to find when to
//     // stop and serves no other purpose.
//     ctrl_t sentinel;
//     // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so
//     // that if a probe sequence picks a value near the end of `ctrl`,
//     // `Group` will have valid control bytes to look at.
//     ctrl_t clones[kWidth - 1];
//     // The actual slot data.
//     slot_type slots[capacity];
//   };
//
// The length of this array is computed by `AllocSize()` below.
//
// Control bytes (`ctrl_t`) are bytes (collected into groups of a
// platform-specific size) that define the state of the corresponding slot in
// the slot array. Group manipulation is tightly optimized to be as efficient
// as possible: SSE and friends on x86, clever bit operations on other arches.
//
//      Group 1         Group 2        Group 3
// +---------------+---------------+---------------+
// | | | | | | | | | | | | | | | | | | | | | | | | |
// +---------------+---------------+---------------+
//
// Each control byte is either a special value for empty slots, deleted slots
// (sometimes called *tombstones*), and a special end-of-table marker used by
// iterators, or, if occupied, seven bits (H2) from the hash of the value in the
// corresponding slot.
//
// Storing control bytes in a separate array also has beneficial cache effects,
// since more logical slots will fit into a cache line.
//
// # Hashing
//
// We compute two separate hashes, `H1` and `H2`, from the hash of an object.
// `H1(hash(x))` is an index into `slots`, and essentially the starting point
// for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out
// objects that cannot possibly be the one we are looking for.
//
// # Table operations.
//
// The key operations are `insert`, `find`, and `erase`.
//
// Since `insert` and `erase` are implemented in terms of `find`, we describe
// `find` first. To `find` a value `x`, we compute `hash(x)`. From
// `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every
// group of slots in some interesting order.
//
// We now walk through these indices. At each index, we select the entire group
// starting with that index and extract potential candidates: occupied slots
// with a control byte equal to `H2(hash(x))`. If we find an empty slot in the
// group, we stop and return an error. Each candidate slot `y` is compared with
// `x`; if `x == y`, we are done and return `&y`; otherwise we contine to the
// next probe index. Tombstones effectively behave like full slots that never
// match the value we're looking for.
//
// The `H2` bits ensure when we compare a slot to an object with `==`, we are
// likely to have actually found the object.  That is, the chance is low that
// `==` is called and returns `false`.  Thus, when we search for an object, we
// are unlikely to call `==` many times.  This likelyhood can be analyzed as
// follows (assuming that H2 is a random enough hash function).
//
// Let's assume that there are `k` "wrong" objects that must be examined in a
// probe sequence.  For example, when doing a `find` on an object that is in the
// table, `k` is the number of objects between the start of the probe sequence
// and the final found object (not including the final found object).  The
// expected number of objects with an H2 match is then `k/128`.  Measurements
// and analysis indicate that even at high load factors, `k` is less than 32,
// meaning that the number of "false positive" comparisons we must perform is
// less than 1/8 per `find`.

// `insert` is implemented in terms of `unchecked_insert`, which inserts a
// value presumed to not be in the table (violating this requirement will cause
// the table to behave erratically). Given `x` and its hash `hash(x)`, to insert
// it, we construct a `probe_seq` once again, and use it to find the first
// group with an unoccupied (empty *or* deleted) slot. We place `x` into the
// first such slot in the group and mark it as full with `x`'s H2.
//
// To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and
// perform a `find` to see if it's already present; if it is, we're done. If
// it's not, we may decide the table is getting overcrowded (i.e. the load
// factor is greater than 7/8 for big tables; `is_small()` tables use a max load
// factor of 1); in this case, we allocate a bigger array, `unchecked_insert`
// each element of the table into the new array (we know that no insertion here
// will insert an already-present value), and discard the old backing array. At
// this point, we may `unchecked_insert` the value `x`.
//
// Below, `unchecked_insert` is partly implemented by `prepare_insert`, which
// presents a viable, initialized slot pointee to the caller.
//
// `erase` is implemented in terms of `erase_at`, which takes an index to a
// slot. Given an offset, we simply create a tombstone and destroy its contents.
// If we can prove that the slot would not appear in a probe sequence, we can
// make the slot as empty, instead. We can prove this by observing that if a
// group has any empty slots, it has never been full (assuming we never create
// an empty slot in a group with no empties, which this heuristic guarantees we
// never do) and find would stop at this group anyways (since it does not probe
// beyond groups with empties).
//
// `erase` is `erase_at` composed with `find`: if we
// have a value `x`, we can perform a `find`, and then `erase_at` the resulting
// slot.
//
// To iterate, we simply traverse the array, skipping empty and deleted slots
// and stopping when we hit a `kSentinel`.

#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_

#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>

#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/prefetch.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/container/internal/common.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hash_policy_traits.h"
#include "absl/container/internal/hashtable_debug_hooks.h"
#include "absl/container/internal/hashtablez_sampler.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/bits.h"
#include "absl/utility/utility.h"

#ifdef ABSL_INTERNAL_HAVE_SSE2
#include <emmintrin.h>
#endif

#ifdef ABSL_INTERNAL_HAVE_SSSE3
#include <tmmintrin.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifdef ABSL_INTERNAL_HAVE_ARM_NEON
#include <arm_neon.h>
#endif

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {

template <typename AllocType>
void SwapAlloc(AllocType& lhs, AllocType& rhs,
               std::true_type /* propagate_on_container_swap */) {
  using std::swap;
  swap(lhs, rhs);
}
template <typename AllocType>
void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/,
               std::false_type /* propagate_on_container_swap */) {}

// The state for a probe sequence.
//
// Currently, the sequence is a triangular progression of the form
//
//   p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1)
//
// The use of `Width` ensures that each probe step does not overlap groups;
// the sequence effectively outputs the addresses of *groups* (although not
// necessarily aligned to any boundary). The `Group` machinery allows us
// to check an entire group with minimal branching.
//
// Wrapping around at `mask + 1` is important, but not for the obvious reason.
// As described above, the first few entries of the control byte array
// are mirrored at the end of the array, which `Group` will find and use
// for selecting candidates. However, when those candidates' slots are
// actually inspected, there are no corresponding slots for the cloned bytes,
// so we need to make sure we've treated those offsets as "wrapping around".
//
// It turns out that this probe sequence visits every group exactly once if the
// number of groups is a power of two, since (i^2+i)/2 is a bijection in
// Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing
template <size_t Width>
class probe_seq {
 public:
  // Creates a new probe sequence using `hash` as the initial value of the
  // sequence and `mask` (usually the capacity of the table) as the mask to
  // apply to each value in the progression.
  probe_seq(size_t hash, size_t mask) {
    assert(((mask + 1) & mask) == 0 && "not a mask");
    mask_ = mask;
    offset_ = hash & mask_;
  }

  // The offset within the table, i.e., the value `p(i)` above.
  size_t offset() const { return offset_; }
  size_t offset(size_t i) const { return (offset_ + i) & mask_; }

  void next() {
    index_ += Width;
    offset_ += index_;
    offset_ &= mask_;
  }
  // 0-based probe index, a multiple of `Width`.
  size_t index() const { return index_; }

 private:
  size_t mask_;
  size_t offset_;
  size_t index_ = 0;
};

template <class ContainerKey, class Hash, class Eq>
struct RequireUsableKey {
  template <class PassedKey, class... Args>
  std::pair<
      decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
      decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
                                         std::declval<const PassedKey&>()))>*
  operator()(const PassedKey&, const Args&...) const;
};

template <class E, class Policy, class Hash, class Eq, class... Ts>
struct IsDecomposable : std::false_type {};

template <class Policy, class Hash, class Eq, class... Ts>
struct IsDecomposable<
    absl::void_t<decltype(Policy::apply(
        RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
        std::declval<Ts>()...))>,
    Policy, Hash, Eq, Ts...> : std::true_type {};

// TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
template <class T>
constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) {
  using std::swap;
  return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
}
template <class T>
constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) {
  return false;
}

template <typename T>
uint32_t TrailingZeros(T x) {
  ABSL_ASSUME(x != 0);
  return static_cast<uint32_t>(countr_zero(x));
}

// An abstract bitmask, such as that emitted by a SIMD instruction.
//
// Specifically, this type implements a simple bitset whose representation is
// controlled by `SignificantBits` and `Shift`. `SignificantBits` is the number
// of abstract bits in the bitset, while `Shift` is the log-base-two of the
// width of an abstract bit in the representation.
// This mask provides operations for any number of real bits set in an abstract
// bit. To add iteration on top of that, implementation must guarantee no more
// than one real bit is set in an abstract bit.
template <class T, int SignificantBits, int Shift = 0>
class NonIterableBitMask {
 public:
  explicit NonIterableBitMask(T mask) : mask_(mask) {}

  explicit operator bool() const { return this->mask_ != 0; }

  // Returns the index of the lowest *abstract* bit set in `self`.
  uint32_t LowestBitSet() const {
    return container_internal::TrailingZeros(mask_) >> Shift;
  }

  // Returns the index of the highest *abstract* bit set in `self`.
  uint32_t HighestBitSet() const {
    return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift);
  }

  // Return the number of trailing zero *abstract* bits.
  uint32_t TrailingZeros() const {
    return container_internal::TrailingZeros(mask_) >> Shift;
  }

  // Return the number of leading zero *abstract* bits.
  uint32_t LeadingZeros() const {
    constexpr int total_significant_bits = SignificantBits << Shift;
    constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
    return static_cast<uint32_t>(countl_zero(mask_ << extra_bits)) >> Shift;
  }

  T mask_;
};

// Mask that can be iterable
//
// For example, when `SignificantBits` is 16 and `Shift` is zero, this is just
// an ordinary 16-bit bitset occupying the low 16 bits of `mask`. When
// `SignificantBits` is 8 and `Shift` is 3, abstract bits are represented as
// the bytes `0x00` and `0x80`, and it occupies all 64 bits of the bitmask.
//
// For example:
//   for (int i : BitMask<uint32_t, 16>(0b101)) -> yields 0, 2
//   for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
template <class T, int SignificantBits, int Shift = 0>
class BitMask : public NonIterableBitMask<T, SignificantBits, Shift> {
  using Base = NonIterableBitMask<T, SignificantBits, Shift>;
  static_assert(std::is_unsigned<T>::value, "");
  static_assert(Shift == 0 || Shift == 3, "");

 public:
  explicit BitMask(T mask) : Base(mask) {}
  // BitMask is an iterator over the indices of its abstract bits.
  using value_type = int;
  using iterator = BitMask;
  using const_iterator = BitMask;

  BitMask& operator++() {
    this->mask_ &= (this->mask_ - 1);
    return *this;
  }

  uint32_t operator*() const { return Base::LowestBitSet(); }

  BitMask begin() const { return *this; }
  BitMask end() const { return BitMask(0); }

 private:
  friend bool operator==(const BitMask& a, const BitMask& b) {
    return a.mask_ == b.mask_;
  }
  friend bool operator!=(const BitMask& a, const BitMask& b) {
    return a.mask_ != b.mask_;
  }
};

using h2_t = uint8_t;

// The values here are selected for maximum performance. See the static asserts
// below for details.

// A `ctrl_t` is a single control byte, which can have one of four
// states: empty, deleted, full (which has an associated seven-bit h2_t value)
// and the sentinel. They have the following bit patterns:
//
//      empty: 1 0 0 0 0 0 0 0
//    deleted: 1 1 1 1 1 1 1 0
//       full: 0 h h h h h h h  // h represents the hash bits.
//   sentinel: 1 1 1 1 1 1 1 1
//
// These values are specifically tuned for SSE-flavored SIMD.
// The static_asserts below detail the source of these choices.
//
// We use an enum class so that when strict aliasing is enabled, the compiler
// knows ctrl_t doesn't alias other types.
enum class ctrl_t : int8_t {
  kEmpty = -128,   // 0b10000000
  kDeleted = -2,   // 0b11111110
  kSentinel = -1,  // 0b11111111
};
static_assert(
    (static_cast<int8_t>(ctrl_t::kEmpty) &
     static_cast<int8_t>(ctrl_t::kDeleted) &
     static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0,
    "Special markers need to have the MSB to make checking for them efficient");
static_assert(
    ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel,
    "ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than "
    "ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient");
static_assert(
    ctrl_t::kSentinel == static_cast<ctrl_t>(-1),
    "ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD "
    "registers (pcmpeqd xmm, xmm)");
static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128),
              "ctrl_t::kEmpty must be -128 to make the SIMD check for its "
              "existence efficient (psignb xmm, xmm)");
static_assert(
    (~static_cast<int8_t>(ctrl_t::kEmpty) &
     ~static_cast<int8_t>(ctrl_t::kDeleted) &
     static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0,
    "ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not "
    "shared by ctrl_t::kSentinel to make the scalar test for "
    "MaskEmptyOrDeleted() efficient");
static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2),
              "ctrl_t::kDeleted must be -2 to make the implementation of "
              "ConvertSpecialToEmptyAndFullToDeleted efficient");

ABSL_DLL extern const ctrl_t kEmptyGroup[16];

// Returns a pointer to a control byte group that can be used by empty tables.
inline ctrl_t* EmptyGroup() {
  // Const must be cast away here; no uses of this function will actually write
  // to it, because it is only used for empty tables.
  return const_cast<ctrl_t*>(kEmptyGroup);
}

// Mixes a randomly generated per-process seed with `hash` and `ctrl` to
// randomize insertion order within groups.
bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl);

// Returns a per-table, hash salt, which changes on resize. This gets mixed into
// H1 to randomize iteration order per-table.
//
// The seed consists of the ctrl_ pointer, which adds enough entropy to ensure
// non-determinism of iteration order in most cases.
inline size_t PerTableSalt(const ctrl_t* ctrl) {
  // The low bits of the pointer have little or no entropy because of
  // alignment. We shift the pointer to try to use higher entropy bits. A
  // good number seems to be 12 bits, because that aligns with page size.
  return reinterpret_cast<uintptr_t>(ctrl) >> 12;
}
// Extracts the H1 portion of a hash: 57 bits mixed with a per-table salt.
inline size_t H1(size_t hash, const ctrl_t* ctrl) {
  return (hash >> 7) ^ PerTableSalt(ctrl);
}

// Extracts the H2 portion of a hash: the 7 bits not used for H1.
//
// These are used as an occupied control byte.
inline h2_t H2(size_t hash) { return hash & 0x7F; }

// Helpers for checking the state of a control byte.
inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; }
inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); }
inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; }
inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; }

#ifdef ABSL_INTERNAL_HAVE_SSE2
// Quick reference guide for intrinsics used below:
//
// * __m128i: An XMM (128-bit) word.
//
// * _mm_setzero_si128: Returns a zero vector.
// * _mm_set1_epi8:     Returns a vector with the same i8 in each lane.
//
// * _mm_subs_epi8:    Saturating-subtracts two i8 vectors.
// * _mm_and_si128:    Ands two i128s together.
// * _mm_or_si128:     Ors two i128s together.
// * _mm_andnot_si128: And-nots two i128s together.
//
// * _mm_cmpeq_epi8: Component-wise compares two i8 vectors for equality,
//                   filling each lane with 0x00 or 0xff.
// * _mm_cmpgt_epi8: Same as above, but using > rather than ==.
//
// * _mm_loadu_si128:  Performs an unaligned load of an i128.
// * _mm_storeu_si128: Performs an unaligned store of an i128.
//
// * _mm_sign_epi8:     Retains, negates, or zeroes each i8 lane of the first
//                      argument if the corresponding lane of the second
//                      argument is positive, negative, or zero, respectively.
// * _mm_movemask_epi8: Selects the sign bit out of each i8 lane and produces a
//                      bitmask consisting of those bits.
// * _mm_shuffle_epi8:  Selects i8s from the first argument, using the low
//                      four bits of each i8 lane in the second argument as
//                      indices.

// https://github.com/abseil/abseil-cpp/issues/209
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
// _mm_cmpgt_epi8 is broken under GCC with -funsigned-char
// Work around this by using the portable implementation of Group
// when using -funsigned-char under GCC.
inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
#if defined(__GNUC__) && !defined(__clang__)
  if (std::is_unsigned<char>::value) {
    const __m128i mask = _mm_set1_epi8(0x80);
    const __m128i diff = _mm_subs_epi8(b, a);
    return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
  }
#endif
  return _mm_cmpgt_epi8(a, b);
}

struct GroupSse2Impl {
  static constexpr size_t kWidth = 16;  // the number of slots per group

  explicit GroupSse2Impl(const ctrl_t* pos) {
    ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
  }

  // Returns a bitmask representing the positions of slots that match hash.
  BitMask<uint32_t, kWidth> Match(h2_t hash) const {
    auto match = _mm_set1_epi8(hash);
    return BitMask<uint32_t, kWidth>(
        static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
  }

  // Returns a bitmask representing the positions of empty slots.
  NonIterableBitMask<uint32_t, kWidth> MaskEmpty() const {
#ifdef ABSL_INTERNAL_HAVE_SSSE3
    // This only works because ctrl_t::kEmpty is -128.
    return NonIterableBitMask<uint32_t, kWidth>(
        static_cast<uint32_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))));
#else
    auto match = _mm_set1_epi8(static_cast<h2_t>(ctrl_t::kEmpty));
    return NonIterableBitMask<uint32_t, kWidth>(
        static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
#endif
  }

  // Returns a bitmask representing the positions of empty or deleted slots.
  NonIterableBitMask<uint32_t, kWidth> MaskEmptyOrDeleted() const {
    auto special = _mm_set1_epi8(static_cast<uint8_t>(ctrl_t::kSentinel));
    return NonIterableBitMask<uint32_t, kWidth>(static_cast<uint32_t>(
        _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))));
  }

  // Returns the number of trailing empty or deleted elements in the group.
  uint32_t CountLeadingEmptyOrDeleted() const {
    auto special = _mm_set1_epi8(static_cast<uint8_t>(ctrl_t::kSentinel));
    return TrailingZeros(static_cast<uint32_t>(
        _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1));
  }

  void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
    auto msbs = _mm_set1_epi8(static_cast<char>(-128));
    auto x126 = _mm_set1_epi8(126);
#ifdef ABSL_INTERNAL_HAVE_SSSE3
    auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
#else
    auto zero = _mm_setzero_si128();
    auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
    auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
#endif
    _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
  }

  __m128i ctrl;
};
#endif  // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2

#if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
struct GroupAArch64Impl {
  static constexpr size_t kWidth = 8;

  explicit GroupAArch64Impl(const ctrl_t* pos) {
    ctrl = vld1_u8(reinterpret_cast<const uint8_t*>(pos));
  }

  BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
    uint8x8_t dup = vdup_n_u8(hash);
    auto mask = vceq_u8(ctrl, dup);
    constexpr uint64_t msbs = 0x8080808080808080ULL;
    return BitMask<uint64_t, kWidth, 3>(
        vget_lane_u64(vreinterpret_u64_u8(mask), 0) & msbs);
  }

  NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
    uint64_t mask =
        vget_lane_u64(vreinterpret_u64_u8(
                          vceq_s8(vdup_n_s8(static_cast<h2_t>(ctrl_t::kEmpty)),
                                  vreinterpret_s8_u8(ctrl))),
                      0);
    return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
  }

  NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
    uint64_t mask =
        vget_lane_u64(vreinterpret_u64_u8(vcgt_s8(
                          vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)),
                          vreinterpret_s8_u8(ctrl))),
                      0);
    return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
  }

  uint32_t CountLeadingEmptyOrDeleted() const {
    uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0);
    // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and
    // kDeleted. We lower all other bits and count number of trailing zeros.
    // Clang and GCC optimize countr_zero to rbit+clz without any check for 0,
    // so we should be fine.
    constexpr uint64_t bits = 0x0101010101010101ULL;
    return countr_zero((mask | ~(mask >> 7)) & bits) >> 3;
  }

  void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
    uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0);
    constexpr uint64_t msbs = 0x8080808080808080ULL;
    constexpr uint64_t lsbs = 0x0101010101010101ULL;
    auto x = mask & msbs;
    auto res = (~x + (x >> 7)) & ~lsbs;
    little_endian::Store64(dst, res);
  }

  uint8x8_t ctrl;
};
#endif  // ABSL_INTERNAL_HAVE_ARM_NEON && ABSL_IS_LITTLE_ENDIAN

struct GroupPortableImpl {
  static constexpr size_t kWidth = 8;

  explicit GroupPortableImpl(const ctrl_t* pos)
      : ctrl(little_endian::Load64(pos)) {}

  BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
    // For the technique, see:
    // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
    // (Determine if a word has a byte equal to n).
    //
    // Caveat: there are false positives but:
    // - they only occur if there is a real match
    // - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel
    // - they will be handled gracefully by subsequent checks in code
    //
    // Example:
    //   v = 0x1716151413121110
    //   hash = 0x12
    //   retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
    constexpr uint64_t msbs = 0x8080808080808080ULL;
    constexpr uint64_t lsbs = 0x0101010101010101ULL;
    auto x = ctrl ^ (lsbs * hash);
    return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs);
  }

  NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
    constexpr uint64_t msbs = 0x8080808080808080ULL;
    return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) &
                                                   msbs);
  }

  NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
    constexpr uint64_t msbs = 0x8080808080808080ULL;
    return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) &
                                                   msbs);
  }

  uint32_t CountLeadingEmptyOrDeleted() const {
    // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and
    // kDeleted. We lower all other bits and count number of trailing zeros.
    constexpr uint64_t bits = 0x0101010101010101ULL;
    return countr_zero((ctrl | ~(ctrl >> 7)) & bits) >> 3;
  }

  void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
    constexpr uint64_t msbs = 0x8080808080808080ULL;
    constexpr uint64_t lsbs = 0x0101010101010101ULL;
    auto x = ctrl & msbs;
    auto res = (~x + (x >> 7)) & ~lsbs;
    little_endian::Store64(dst, res);
  }

  uint64_t ctrl;
};

#ifdef ABSL_INTERNAL_HAVE_SSE2
using Group = GroupSse2Impl;
#elif defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
using Group = GroupAArch64Impl;
#else
using Group = GroupPortableImpl;
#endif

// Returns he number of "cloned control bytes".
//
// This is the number of control bytes that are present both at the beginning
// of the control byte array and at the end, such that we can create a
// `Group::kWidth`-width probe window starting from any control byte.
constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }

template <class Policy, class Hash, class Eq, class Alloc>
class raw_hash_set;

// Returns whether `n` is a valid capacity (i.e., number of slots).
//
// A valid capacity is a non-zero integer `2^m - 1`.
inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }

// Applies the following mapping to every byte in the control array:
//   * kDeleted -> kEmpty
//   * kEmpty -> kEmpty
//   * _ -> kDeleted
// PRECONDITION:
//   IsValidCapacity(capacity)
//   ctrl[capacity] == ctrl_t::kSentinel
//   ctrl[i] != ctrl_t::kSentinel for all i < capacity
void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity);

// Converts `n` into the next valid capacity, per `IsValidCapacity`.
inline size_t NormalizeCapacity(size_t n) {
  return n ? ~size_t{} >> countl_zero(n) : 1;
}

// General notes on capacity/growth methods below:
// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an
//   average of two empty slots per group.
// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity.
// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we
//   never need to probe (the whole table fits in one group) so we don't need a
//   load factor less than 1.

// Given `capacity`, applies the load factor; i.e., it returns the maximum
// number of values we should put into the table before a resizing rehash.
inline size_t CapacityToGrowth(size_t capacity) {
  assert(IsValidCapacity(capacity));
  // `capacity*7/8`
  if (Group::kWidth == 8 && capacity == 7) {
    // x-x/8 does not work when x==7.
    return 6;
  }
  return capacity - capacity / 8;
}

// Given `growth`, "unapplies" the load factor to find how large the capacity
// should be to stay within the load factor.
//
// This might not be a valid capacity and `NormalizeCapacity()` should be
// called on this.
inline size_t GrowthToLowerboundCapacity(size_t growth) {
  // `growth*8/7`
  if (Group::kWidth == 8 && growth == 7) {
    // x+(x-1)/7 does not work when x==7.
    return 8;
  }
  return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7);
}

template <class InputIter>
size_t SelectBucketCountForIterRange(InputIter first, InputIter last,
                                     size_t bucket_count) {
  if (bucket_count != 0) {
    return bucket_count;
  }
  using InputIterCategory =
      typename std::iterator_traits<InputIter>::iterator_category;
  if (std::is_base_of<std::random_access_iterator_tag,
                      InputIterCategory>::value) {
    return GrowthToLowerboundCapacity(
        static_cast<size_t>(std::distance(first, last)));
  }
  return 0;
}

#define ABSL_INTERNAL_ASSERT_IS_FULL(ctrl, msg) \
  ABSL_HARDENING_ASSERT((ctrl != nullptr && IsFull(*ctrl)) && msg)

inline void AssertIsValid(ctrl_t* ctrl) {
  ABSL_HARDENING_ASSERT(
      (ctrl == nullptr || IsFull(*ctrl)) &&
      "Invalid operation on iterator. The element might have "
      "been erased, the table might have rehashed, or this may "
      "be an end() iterator.");
}

struct FindInfo {
  size_t offset;
  size_t probe_length;
};

// Whether a table is "small". A small table fits entirely into a probing
// group, i.e., has a capacity < `Group::kWidth`.
//
// In small mode we are able to use the whole capacity. The extra control
// bytes give us at least one "empty" control byte to stop the iteration.
// This is important to make 1 a valid capacity.
//
// In small mode only the first `capacity` control bytes after the sentinel
// are valid. The rest contain dummy ctrl_t::kEmpty values that do not
// represent a real slot. This is important to take into account on
// `find_first_non_full()`, where we never try
// `ShouldInsertBackwards()` for small tables.
inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; }

// Begins a probing operation on `ctrl`, using `hash`.
inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, size_t hash,
                                      size_t capacity) {
  return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity);
}

// Probes an array of control bits using a probe sequence derived from `hash`,
// and returns the offset corresponding to the first deleted or empty slot.
//
// Behavior when the entire table is full is undefined.
//
// NOTE: this function must work with tables having both empty and deleted
// slots in the same group. Such tables appear during `erase()`.
template <typename = void>
inline FindInfo find_first_non_full(const ctrl_t* ctrl, size_t hash,
                                    size_t capacity) {
  auto seq = probe(ctrl, hash, capacity);
  while (true) {
    Group g{ctrl + seq.offset()};
    auto mask = g.MaskEmptyOrDeleted();
    if (mask) {
#if !defined(NDEBUG)
      // We want to add entropy even when ASLR is not enabled.
      // In debug build we will randomly insert in either the front or back of
      // the group.
      // TODO(kfm,sbenza): revisit after we do unconditional mixing
      if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) {
        return {seq.offset(mask.HighestBitSet()), seq.index()};
      }
#endif
      return {seq.offset(mask.LowestBitSet()), seq.index()};
    }
    seq.next();
    assert(seq.index() <= capacity && "full table!");
  }
}

// Extern template for inline function keep possibility of inlining.
// When compiler decided to not inline, no symbols will be added to the
// corresponding translation unit.
extern template FindInfo find_first_non_full(const ctrl_t*, size_t, size_t);

// Sets `ctrl` to `{kEmpty, kSentinel, ..., kEmpty}`, marking the entire
// array as marked as empty.
inline void ResetCtrl(size_t capacity, ctrl_t* ctrl, const void* slot,
                      size_t slot_size) {
  std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
              capacity + 1 + NumClonedBytes());
  ctrl[capacity] = ctrl_t::kSentinel;
  SanitizerPoisonMemoryRegion(slot, slot_size * capacity);
}

// Sets `ctrl[i]` to `h`.
//
// Unlike setting it directly, this function will perform bounds checks and
// mirror the value to the cloned tail if necessary.
inline void SetCtrl(size_t i, ctrl_t h, size_t capacity, ctrl_t* ctrl,
                    const void* slot, size_t slot_size) {
  assert(i < capacity);

  auto* slot_i = static_cast<const char*>(slot) + i * slot_size;
  if (IsFull(h)) {
    SanitizerUnpoisonMemoryRegion(slot_i, slot_size);
  } else {
    SanitizerPoisonMemoryRegion(slot_i, slot_size);
  }

  ctrl[i] = h;
  ctrl[((i - NumClonedBytes()) & capacity) + (NumClonedBytes() & capacity)] = h;
}

// Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
inline void SetCtrl(size_t i, h2_t h, size_t capacity, ctrl_t* ctrl,
                    const void* slot, size_t slot_size) {
  SetCtrl(i, static_cast<ctrl_t>(h), capacity, ctrl, slot, slot_size);
}

// Given the capacity of a table, computes the offset (from the start of the
// backing allocation) at which the slots begin.
inline size_t SlotOffset(size_t capacity, size_t slot_align) {
  assert(IsValidCapacity(capacity));
  const size_t num_control_bytes = capacity + 1 + NumClonedBytes();
  return (num_control_bytes + slot_align - 1) & (~slot_align + 1);
}

// Given the capacity of a table, computes the total size of the backing
// array.
inline size_t AllocSize(size_t capacity, size_t slot_size, size_t slot_align) {
  return SlotOffset(capacity, slot_align) + capacity * slot_size;
}

// A SwissTable.
//
// Policy: a policy defines how to perform different operations on
// the slots of the hashtable (see hash_policy_traits.h for the full interface
// of policy).
//
// Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
// functor should accept a key and return size_t as hash. For best performance
// it is important that the hash function provides high entropy across all bits
// of the hash.
//
// Eq: a (possibly polymorphic) functor that compares two keys for equality. It
// should accept two (of possibly different type) keys and return a bool: true
// if they are equal, false if they are not. If two keys compare equal, then
// their hash values as defined by Hash MUST be equal.
//
// Allocator: an Allocator
// [https://en.cppreference.com/w/cpp/named_req/Allocator] with which
// the storage of the hashtable will be allocated and the elements will be
// constructed and destroyed.
template <class Policy, class Hash, class Eq, class Alloc>
class raw_hash_set {
  using PolicyTraits = hash_policy_traits<Policy>;
  using KeyArgImpl =
      KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;

 public:
  using init_type = typename PolicyTraits::init_type;
  using key_type = typename PolicyTraits::key_type;
  // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
  // code fixes!
  using slot_type = typename PolicyTraits::slot_type;
  using allocator_type = Alloc;
  using size_type = size_t;
  using difference_type = ptrdiff_t;
  using hasher = Hash;
  using key_equal = Eq;
  using policy_type = Policy;
  using value_type = typename PolicyTraits::value_type;
  using reference = value_type&;
  using const_reference = const value_type&;
  using pointer = typename absl::allocator_traits<
      allocator_type>::template rebind_traits<value_type>::pointer;
  using const_pointer = typename absl::allocator_traits<
      allocator_type>::template rebind_traits<value_type>::const_pointer;

  // Alias used for heterogeneous lookup functions.
  // `key_arg<K>` evaluates to `K` when the functors are transparent and to
  // `key_type` otherwise. It permits template argument deduction on `K` for the
  // transparent case.
  template <class K>
  using key_arg = typename KeyArgImpl::template type<K, key_type>;

 private:
  // Give an early error when key_type is not hashable/eq.
  auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
  auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));

  using AllocTraits = absl::allocator_traits<allocator_type>;
  using SlotAlloc = typename absl::allocator_traits<
      allocator_type>::template rebind_alloc<slot_type>;
  using SlotAllocTraits = typename absl::allocator_traits<
      allocator_type>::template rebind_traits<slot_type>;

  static_assert(std::is_lvalue_reference<reference>::value,
                "Policy::element() must return a reference");

  template <typename T>
  struct SameAsElementReference
      : std::is_same<typename std::remove_cv<
                         typename std::remove_reference<reference>::type>::type,
                     typename std::remove_cv<
                         typename std::remove_reference<T>::type>::type> {};

  // An enabler for insert(T&&): T must be convertible to init_type or be the
  // same as [cv] value_type [ref].
  // Note: we separate SameAsElementReference into its own type to avoid using
  // reference unless we need to. MSVC doesn't seem to like it in some
  // cases.
  template <class T>
  using RequiresInsertable = typename std::enable_if<
      absl::disjunction<std::is_convertible<T, init_type>,
                        SameAsElementReference<T>>::value,
      int>::type;

  // RequiresNotInit is a workaround for gcc prior to 7.1.
  // See https://godbolt.org/g/Y4xsUh.
  template <class T>
  using RequiresNotInit =
      typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;

  template <class... Ts>
  using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;

 public:
  static_assert(std::is_same<pointer, value_type*>::value,
                "Allocators with custom pointer types are not supported");
  static_assert(std::is_same<const_pointer, const value_type*>::value,
                "Allocators with custom pointer types are not supported");

  class iterator {
    friend class raw_hash_set;

   public:
    using iterator_category = std::forward_iterator_tag;
    using value_type = typename raw_hash_set::value_type;
    using reference =
        absl::conditional_t<PolicyTraits::constant_iterators::value,
                            const value_type&, value_type&>;
    using pointer = absl::remove_reference_t<reference>*;
    using difference_type = typename raw_hash_set::difference_type;

    iterator() {}

    // PRECONDITION: not an end() iterator.
    reference operator*() const {
      ABSL_INTERNAL_ASSERT_IS_FULL(ctrl_,
                                   "operator*() called on invalid iterator.");
      return PolicyTraits::element(slot_);
    }

    // PRECONDITION: not an end() iterator.
    pointer operator->() const {
      ABSL_INTERNAL_ASSERT_IS_FULL(ctrl_,
                                   "operator-> called on invalid iterator.");
      return &operator*();
    }

    // PRECONDITION: not an end() iterator.
    iterator& operator++() {
      ABSL_INTERNAL_ASSERT_IS_FULL(ctrl_,
                                   "operator++ called on invalid iterator.");
      ++ctrl_;
      ++slot_;
      skip_empty_or_deleted();
      return *this;
    }
    // PRECONDITION: not an end() iterator.
    iterator operator++(int) {
      auto tmp = *this;
      ++*this;
      return tmp;
    }

    friend bool operator==(const iterator& a, const iterator& b) {
      AssertIsValid(a.ctrl_);
      AssertIsValid(b.ctrl_);
      return a.ctrl_ == b.ctrl_;
    }
    friend bool operator!=(const iterator& a, const iterator& b) {
      return !(a == b);
    }

   private:
    iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {
      // This assumption helps the compiler know that any non-end iterator is
      // not equal to any end iterator.
      ABSL_ASSUME(ctrl != nullptr);
    }

    // Fixes up `ctrl_` to point to a full by advancing it and `slot_` until
    // they reach one.
    //
    // If a sentinel is reached, we null both of them out instead.
    void skip_empty_or_deleted() {
      while (IsEmptyOrDeleted(*ctrl_)) {
        uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted();
        ctrl_ += shift;
        slot_ += shift;
      }
      if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr;
    }

    ctrl_t* ctrl_ = nullptr;
    // To avoid uninitialized member warnings, put slot_ in an anonymous union.
    // The member is not initialized on singleton and end iterators.
    union {
      slot_type* slot_;
    };
  };

  class const_iterator {
    friend class raw_hash_set;

   public:
    using iterator_category = typename iterator::iterator_category;
    using value_type = typename raw_hash_set::value_type;
    using reference = typename raw_hash_set::const_reference;
    using pointer = typename raw_hash_set::const_pointer;
    using difference_type = typename raw_hash_set::difference_type;

    const_iterator() {}
    // Implicit construction from iterator.
    const_iterator(iterator i) : inner_(std::move(i)) {}

    reference operator*() const { return *inner_; }
    pointer operator->() const { return inner_.operator->(); }

    const_iterator& operator++() {
      ++inner_;
      return *this;
    }
    const_iterator operator++(int) { return inner_++; }

    friend bool operator==(const const_iterator& a, const const_iterator& b) {
      return a.inner_ == b.inner_;
    }
    friend bool operator!=(const const_iterator& a, const const_iterator& b) {
      return !(a == b);
    }

   private:
    const_iterator(const ctrl_t* ctrl, const slot_type* slot)
        : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {}

    iterator inner_;
  };

  using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
  using insert_return_type = InsertReturnType<iterator, node_type>;

  raw_hash_set() noexcept(
      std::is_nothrow_default_constructible<hasher>::value&&
          std::is_nothrow_default_constructible<key_equal>::value&&
              std::is_nothrow_default_constructible<allocator_type>::value) {}

  explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(),
                        const key_equal& eq = key_equal(),
                        const allocator_type& alloc = allocator_type())
      : ctrl_(EmptyGroup()),
        settings_(0, HashtablezInfoHandle(), hash, eq, alloc) {
    if (bucket_count) {
      capacity_ = NormalizeCapacity(bucket_count);
      initialize_slots();
    }
  }

  raw_hash_set(size_t bucket_count, const hasher& hash,
               const allocator_type& alloc)
      : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}

  raw_hash_set(size_t bucket_count, const allocator_type& alloc)
      : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}

  explicit raw_hash_set(const allocator_type& alloc)
      : raw_hash_set(0, hasher(), key_equal(), alloc) {}

  template <class InputIter>
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
               const allocator_type& alloc = allocator_type())
      : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count),
                     hash, eq, alloc) {
    insert(first, last);
  }

  template <class InputIter>
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
               const hasher& hash, const allocator_type& alloc)
      : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}

  template <class InputIter>
  raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
               const allocator_type& alloc)
      : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}

  template <class InputIter>
  raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
      : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}

  // Instead of accepting std::initializer_list<value_type> as the first
  // argument like std::unordered_set<value_type> does, we have two overloads
  // that accept std::initializer_list<T> and std::initializer_list<init_type>.
  // This is advantageous for performance.
  //
  //   // Turns {"abc", "def"} into std::initializer_list<std::string>, then
  //   // copies the strings into the set.
  //   std::unordered_set<std::string> s = {"abc", "def"};
  //
  //   // Turns {"abc", "def"} into std::initializer_list<const char*>, then
  //   // copies the strings into the set.
  //   absl::flat_hash_set<std::string> s = {"abc", "def"};
  //
  // The same trick is used in insert().
  //
  // The enabler is necessary to prevent this constructor from triggering where
  // the copy constructor is meant to be called.
  //
  //   absl::flat_hash_set<int> a, b{a};
  //
  // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
               const allocator_type& alloc = allocator_type())
      : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}

  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
               const hasher& hash = hasher(), const key_equal& eq = key_equal(),
               const allocator_type& alloc = allocator_type())
      : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}

  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
               const hasher& hash, const allocator_type& alloc)
      : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}

  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
               const hasher& hash, const allocator_type& alloc)
      : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}

  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
  raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
               const allocator_type& alloc)
      : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}

  raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
               const allocator_type& alloc)
      : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}

  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
  raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
      : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}

  raw_hash_set(std::initializer_list<init_type> init,
               const allocator_type& alloc)
      : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}

  raw_hash_set(const raw_hash_set& that)
      : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
                               that.alloc_ref())) {}

  raw_hash_set(const raw_hash_set& that, const allocator_type& a)
      : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
    reserve(that.size());
    // Because the table is guaranteed to be empty, we can do something faster
    // than a full `insert`.
    for (const auto& v : that) {
      const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
      auto target = find_first_non_full(ctrl_, hash, capacity_);
      SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_,
              sizeof(slot_type));
      emplace_at(target.offset, v);
      infoz().RecordInsert(hash, target.probe_length);
    }
    size_ = that.size();
    growth_left() -= that.size();
  }

  raw_hash_set(raw_hash_set&& that) noexcept(
      std::is_nothrow_copy_constructible<hasher>::value&&
          std::is_nothrow_copy_constructible<key_equal>::value&&
              std::is_nothrow_copy_constructible<allocator_type>::value)
      : ctrl_(absl::exchange(that.ctrl_, EmptyGroup())),
        slots_(absl::exchange(that.slots_, nullptr)),
        size_(absl::exchange(that.size_, 0)),
        capacity_(absl::exchange(that.capacity_, 0)),
        // Hash, equality and allocator are copied instead of moved because
        // `that` must be left valid. If Hash is std::function<Key>, moving it
        // would create a nullptr functor that cannot be called.
        settings_(absl::exchange(that.growth_left(), 0),
                  absl::exchange(that.infoz(), HashtablezInfoHandle()),
                  that.hash_ref(), that.eq_ref(), that.alloc_ref()) {}

  raw_hash_set(raw_hash_set&& that, const allocator_type& a)
      : ctrl_(EmptyGroup()),
        slots_(nullptr),
        size_(0),
        capacity_(0),
        settings_(0, HashtablezInfoHandle(), that.hash_ref(), that.eq_ref(),
                  a) {
    if (a == that.alloc_ref()) {
      std::swap(ctrl_, that.ctrl_);
      std::swap(slots_, that.slots_);
      std::swap(size_, that.size_);
      std::swap(capacity_, that.capacity_);
      std::swap(growth_left(), that.growth_left());
      std::swap(infoz(), that.infoz());
    } else {
      reserve(that.size());
      // Note: this will copy elements of dense_set and unordered_set instead of
      // moving them. This can be fixed if it ever becomes an issue.
      for (auto& elem : that) insert(std::move(elem));
    }
  }

  raw_hash_set& operator=(const raw_hash_set& that) {
    raw_hash_set tmp(that,
                     AllocTraits::propagate_on_container_copy_assignment::value
                         ? that.alloc_ref()
                         : alloc_ref());
    swap(tmp);
    return *this;
  }

  raw_hash_set& operator=(raw_hash_set&& that) noexcept(
      absl::allocator_traits<allocator_type>::is_always_equal::value&&
          std::is_nothrow_move_assignable<hasher>::value&&
              std::is_nothrow_move_assignable<key_equal>::value) {
    // TODO(sbenza): We should only use the operations from the noexcept clause
    // to make sure we actually adhere to that contract.
    return move_assign(
        std::move(that),
        typename AllocTraits::propagate_on_container_move_assignment());
  }

  ~raw_hash_set() { destroy_slots(); }

  iterator begin() {
    auto it = iterator_at(0);
    it.skip_empty_or_deleted();
    return it;
  }
  iterator end() { return {}; }

  const_iterator begin() const {
    return const_cast<raw_hash_set*>(this)->begin();
  }
  const_iterator end() const { return {}; }
  const_iterator cbegin() const { return begin(); }
  const_iterator cend() const { return end(); }

  bool empty() const { return !size(); }
  size_t size() const { return size_; }
  size_t capacity() const { return capacity_; }
  size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }

  ABSL_ATTRIBUTE_REINITIALIZES void clear() {
    // Iterating over this container is O(bucket_count()). When bucket_count()
    // is much greater than size(), iteration becomes prohibitively expensive.
    // For clear() it is more important to reuse the allocated array when the
    // container is small because allocation takes comparatively long time
    // compared to destruction of the elements of the container. So we pick the
    // largest bucket_count() threshold for which iteration is still fast and
    // past that we simply deallocate the array.
    if (capacity_ > 127) {
      destroy_slots();

      infoz().RecordClearedReservation();
    } else if (capacity_) {
      for (size_t i = 0; i != capacity_; ++i) {
        if (IsFull(ctrl_[i])) {
          PolicyTraits::destroy(&alloc_ref(), slots_ + i);
        }
      }
      size_ = 0;
      ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type));
      reset_growth_left();
    }
    assert(empty());
    infoz().RecordStorageChanged(0, capacity_);
  }

  // This overload kicks in when the argument is an rvalue of insertable and
  // decomposable type other than init_type.
  //
  //   flat_hash_map<std::string, int> m;
  //   m.insert(std::make_pair("abc", 42));
  // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
  // bug.
  template <class T, RequiresInsertable<T> = 0, class T2 = T,
            typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
            T* = nullptr>
  std::pair<iterator, bool> insert(T&& value) {
    return emplace(std::forward<T>(value));
  }

  // This overload kicks in when the argument is a bitfield or an lvalue of
  // insertable and decomposable type.
  //
  //   union { int n : 1; };
  //   flat_hash_set<int> s;
  //   s.insert(n);
  //
  //   flat_hash_set<std::string> s;
  //   const char* p = "hello";
  //   s.insert(p);
  //
  // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
  // RequiresInsertable<T> with RequiresInsertable<const T&>.
  // We are hitting this bug: https://godbolt.org/g/1Vht4f.
  template <
      class T, RequiresInsertable<T> = 0,
      typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
  std::pair<iterator, bool> insert(const T& value) {
    return emplace(value);
  }

  // This overload kicks in when the argument is an rvalue of init_type. Its
  // purpose is to handle brace-init-list arguments.
  //
  //   flat_hash_map<std::string, int> s;
  //   s.insert({"abc", 42});
  std::pair<iterator, bool> insert(init_type&& value) {
    return emplace(std::move(value));
  }

  // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
  // bug.
  template <class T, RequiresInsertable<T> = 0, class T2 = T,
            typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
            T* = nullptr>
  iterator insert(const_iterator, T&& value) {
    return insert(std::forward<T>(value)).first;
  }

  // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
  // RequiresInsertable<T> with RequiresInsertable<const T&>.
  // We are hitting this bug: https://godbolt.org/g/1Vht4f.
  template <
      class T, RequiresInsertable<T> = 0,
      typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
  iterator insert(const_iterator, const T& value) {
    return insert(value).first;
  }

  iterator insert(const_iterator, init_type&& value) {
    return insert(std::move(value)).first;
  }

  template <class InputIt>
  void insert(InputIt first, InputIt last) {
    for (; first != last; ++first) emplace(*first);
  }

  template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
  void insert(std::initializer_list<T> ilist) {
    insert(ilist.begin(), ilist.end());
  }

  void insert(std::initializer_list<init_type> ilist) {
    insert(ilist.begin(), ilist.end());
  }

  insert_return_type insert(node_type&& node) {
    if (!node) return {end(), false, node_type()};
    const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
    auto res = PolicyTraits::apply(
        InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
        elem);
    if (res.second) {
      CommonAccess::Reset(&node);
      return {res.first, true, node_type()};
    } else {
      return {res.first, false, std::move(node)};
    }
  }

  iterator insert(const_iterator, node_type&& node) {
    auto res = insert(std::move(node));
    node = std::move(res.node);
    return res.position;
  }

  // This overload kicks in if we can deduce the key from args. This enables us
  // to avoid constructing value_type if an entry with the same key already
  // exists.
  //
  // For example:
  //
  //   flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
  //   // Creates no std::string copies and makes no heap allocations.
  //   m.emplace("abc", "xyz");
  template <class... Args, typename std::enable_if<
                               IsDecomposable<Args...>::value, int>::type = 0>
  std::pair<iterator, bool> emplace(Args&&... args) {
    return PolicyTraits::apply(EmplaceDecomposable{*this},
                               std::forward<Args>(args)...);
  }

  // This overload kicks in if we cannot deduce the key from args. It constructs
  // value_type unconditionally and then either moves it into the table or
  // destroys.
  template <class... Args, typename std::enable_if<
                               !IsDecomposable<Args...>::value, int>::type = 0>
  std::pair<iterator, bool> emplace(Args&&... args) {
    alignas(slot_type) unsigned char raw[sizeof(slot_type)];
    slot_type* slot = reinterpret_cast<slot_type*>(&raw);

    PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
    const auto& elem = PolicyTraits::element(slot);
    return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
  }

  template <class... Args>
  iterator emplace_hint(const_iterator, Args&&... args) {
    return emplace(std::forward<Args>(args)...).first;
  }

  // Extension API: support for lazy emplace.
  //
  // Looks up key in the table. If found, returns the iterator to the element.
  // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`.
  //
  // `f` must abide by several restrictions:
  //  - it MUST call `raw_hash_set::constructor` with arguments as if a
  //    `raw_hash_set::value_type` is constructed,
  //  - it MUST NOT access the container before the call to
  //    `raw_hash_set::constructor`, and
  //  - it MUST NOT erase the lazily emplaced element.
  // Doing any of these is undefined behavior.
  //
  // For example:
  //
  //   std::unordered_set<ArenaString> s;
  //   // Makes ArenaStr even if "abc" is in the map.
  //   s.insert(ArenaString(&arena, "abc"));
  //
  //   flat_hash_set<ArenaStr> s;
  //   // Makes ArenaStr only if "abc" is not in the map.
  //   s.lazy_emplace("abc", [&](const constructor& ctor) {
  //     ctor(&arena, "abc");
  //   });
  //
  // WARNING: This API is currently experimental. If there is a way to implement
  // the same thing with the rest of the API, prefer that.
  class constructor {
    friend class raw_hash_set;

   public:
    template <class... Args>
    void operator()(Args&&... args) const {
      assert(*slot_);
      PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
      *slot_ = nullptr;
    }

   private:
    constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}

    allocator_type* alloc_;
    slot_type** slot_;
  };

  template <class K = key_type, class F>
  iterator lazy_emplace(const key_arg<K>& key, F&& f) {
    auto res = find_or_prepare_insert(key);
    if (res.second) {
      slot_type* slot = slots_ + res.first;
      std::forward<F>(f)(constructor(&alloc_ref(), &slot));
      assert(!slot);
    }
    return iterator_at(res.first);
  }

  // Extension API: support for heterogeneous keys.
  //
  //   std::unordered_set<std::string> s;
  //   // Turns "abc" into std::string.
  //   s.erase("abc");
  //
  //   flat_hash_set<std::string> s;
  //   // Uses "abc" directly without copying it into std::string.
  //   s.erase("abc");
  template <class K = key_type>
  size_type erase(const key_arg<K>& key) {
    auto it = find(key);
    if (it == end()) return 0;
    erase(it);
    return 1;
  }

  // Erases the element pointed to by `it`.  Unlike `std::unordered_set::erase`,
  // this method returns void to reduce algorithmic complexity to O(1).  The
  // iterator is invalidated, so any increment should be done before calling
  // erase.  In order to erase while iterating across a map, use the following
  // idiom (which also works for standard containers):
  //
  // for (auto it = m.begin(), end = m.end(); it != end;) {
  //   // `erase()` will invalidate `it`, so advance `it` first.
  //   auto copy_it = it++;
  //   if (<pred>) {
  //     m.erase(copy_it);
  //   }
  // }
  void erase(const_iterator cit) { erase(cit.inner_); }

  // This overload is necessary because otherwise erase<K>(const K&) would be
  // a better match if non-const iterator is passed as an argument.
  void erase(iterator it) {
    ABSL_INTERNAL_ASSERT_IS_FULL(it.ctrl_,
                                 "erase() called on invalid iterator.");
    PolicyTraits::destroy(&alloc_ref(), it.slot_);
    erase_meta_only(it);
  }

  iterator erase(const_iterator first, const_iterator last) {
    while (first != last) {
      erase(first++);
    }
    return last.inner_;
  }

  // Moves elements from `src` into `this`.
  // If the element already exists in `this`, it is left unmodified in `src`.
  template <typename H, typename E>
  void merge(raw_hash_set<Policy, H, E, Alloc>& src) {  // NOLINT
    assert(this != &src);
    for (auto it = src.begin(), e = src.end(); it != e;) {
      auto next = std::next(it);
      if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)},
                              PolicyTraits::element(it.slot_))
              .second) {
        src.erase_meta_only(it);
      }
      it = next;
    }
  }

  template <typename H, typename E>
  void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
    merge(src);
  }

  node_type extract(const_iterator position) {
    ABSL_INTERNAL_ASSERT_IS_FULL(position.inner_.ctrl_,
                                 "extract() called on invalid iterator.");
    auto node =
        CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_);
    erase_meta_only(position);
    return node;
  }

  template <
      class K = key_type,
      typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
  node_type extract(const key_arg<K>& key) {
    auto it = find(key);
    return it == end() ? node_type() : extract(const_iterator{it});
  }

  void swap(raw_hash_set& that) noexcept(
      IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
      IsNoThrowSwappable<allocator_type>(
          typename AllocTraits::propagate_on_container_swap{})) {
    using std::swap;
    swap(ctrl_, that.ctrl_);
    swap(slots_, that.slots_);
    swap(size_, that.size_);
    swap(capacity_, that.capacity_);
    swap(growth_left(), that.growth_left());
    swap(hash_ref(), that.hash_ref());
    swap(eq_ref(), that.eq_ref());
    swap(infoz(), that.infoz());
    SwapAlloc(alloc_ref(), that.alloc_ref(),
              typename AllocTraits::propagate_on_container_swap{});
  }

  void rehash(size_t n) {
    if (n == 0 && capacity_ == 0) return;
    if (n == 0 && size_ == 0) {
      destroy_slots();
      infoz().RecordStorageChanged(0, 0);
      infoz().RecordClearedReservation();
      return;
    }

    // bitor is a faster way of doing `max` here. We will round up to the next
    // power-of-2-minus-1, so bitor is good enough.
    auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size()));
    // n == 0 unconditionally rehashes as per the standard.
    if (n == 0 || m > capacity_) {
      resize(m);

      // This is after resize, to ensure that we have completed the allocation
      // and have potentially sampled the hashtable.
      infoz().RecordReservation(n);
    }
  }

  void reserve(size_t n) {
    if (n > size() + growth_left()) {
      size_t m = GrowthToLowerboundCapacity(n);
      resize(NormalizeCapacity(m));

      // This is after resize, to ensure that we have completed the allocation
      // and have potentially sampled the hashtable.
      infoz().RecordReservation(n);
    }
  }

  // Extension API: support for heterogeneous keys.
  //
  //   std::unordered_set<std::string> s;
  //   // Turns "abc" into std::string.
  //   s.count("abc");
  //
  //   ch_set<std::string> s;
  //   // Uses "abc" directly without copying it into std::string.
  //   s.count("abc");
  template <class K = key_type>
  size_t count(const key_arg<K>& key) const {
    return find(key) == end() ? 0 : 1;
  }

  // Issues CPU prefetch instructions for the memory needed to find or insert
  // a key.  Like all lookup functions, this support heterogeneous keys.
  //
  // NOTE: This is a very low level operation and should not be used without
  // specific benchmarks indicating its importance.
  template <class K = key_type>
  void prefetch(const key_arg<K>& key) const {
    (void)key;
    // Avoid probing if we won't be able to prefetch the addresses received.
#ifdef ABSL_INTERNAL_HAVE_PREFETCH
    prefetch_heap_block();
    auto seq = probe(ctrl_, hash_ref()(key), capacity_);
    base_internal::PrefetchT0(ctrl_ + seq.offset());
    base_internal::PrefetchT0(slots_ + seq.offset());
#endif  // ABSL_INTERNAL_HAVE_PREFETCH
  }

  // The API of find() has two extensions.
  //
  // 1. The hash can be passed by the user. It must be equal to the hash of the
  // key.
  //
  // 2. The type of the key argument doesn't have to be key_type. This is so
  // called heterogeneous key support.
  template <class K = key_type>
  iterator find(const key_arg<K>& key, size_t hash) {
    auto seq = probe(ctrl_, hash, capacity_);
    while (true) {
      Group g{ctrl_ + seq.offset()};
      for (uint32_t i : g.Match(H2(hash))) {
        if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
                EqualElement<K>{key, eq_ref()},
                PolicyTraits::element(slots_ + seq.offset(i)))))
          return iterator_at(seq.offset(i));
      }
      if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end();
      seq.next();
      assert(seq.index() <= capacity_ && "full table!");
    }
  }
  template <class K = key_type>
  iterator find(const key_arg<K>& key) {
    prefetch_heap_block();
    return find(key, hash_ref()(key));
  }

  template <class K = key_type>
  const_iterator find(const key_arg<K>& key, size_t hash) const {
    return const_cast<raw_hash_set*>(this)->find(key, hash);
  }
  template <class K = key_type>
  const_iterator find(const key_arg<K>& key) const {
    prefetch_heap_block();
    return find(key, hash_ref()(key));
  }

  template <class K = key_type>
  bool contains(const key_arg<K>& key) const {
    return find(key) != end();
  }

  template <class K = key_type>
  std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
    auto it = find(key);
    if (it != end()) return {it, std::next(it)};
    return {it, it};
  }
  template <class K = key_type>
  std::pair<const_iterator, const_iterator> equal_range(
      const key_arg<K>& key) const {
    auto it = find(key);
    if (it != end()) return {it, std::next(it)};
    return {it, it};
  }

  size_t bucket_count() const { return capacity_; }
  float load_factor() const {
    return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0;
  }
  float max_load_factor() const { return 1.0f; }
  void max_load_factor(float) {
    // Does nothing.
  }

  hasher hash_function() const { return hash_ref(); }
  key_equal key_eq() const { return eq_ref(); }
  allocator_type get_allocator() const { return alloc_ref(); }

  friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
    if (a.size() != b.size()) return false;
    const raw_hash_set* outer = &a;
    const raw_hash_set* inner = &b;
    if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
    for (const value_type& elem : *outer)
      if (!inner->has_element(elem)) return false;
    return true;
  }

  friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
    return !(a == b);
  }

  template <typename H>
  friend typename std::enable_if<H::template is_hashable<value_type>::value,
                                 H>::type
  AbslHashValue(H h, const raw_hash_set& s) {
    return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()),
                      s.size());
  }

  friend void swap(raw_hash_set& a,
                   raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
    a.swap(b);
  }

 private:
  template <class Container, typename Enabler>
  friend struct absl::container_internal::hashtable_debug_internal::
      HashtableDebugAccess;

  struct FindElement {
    template <class K, class... Args>
    const_iterator operator()(const K& key, Args&&...) const {
      return s.find(key);
    }
    const raw_hash_set& s;
  };

  struct HashElement {
    template <class K, class... Args>
    size_t operator()(const K& key, Args&&...) const {
      return h(key);
    }
    const hasher& h;
  };

  template <class K1>
  struct EqualElement {
    template <class K2, class... Args>
    bool operator()(const K2& lhs, Args&&...) const {
      return eq(lhs, rhs);
    }
    const K1& rhs;
    const key_equal& eq;
  };

  struct EmplaceDecomposable {
    template <class K, class... Args>
    std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
      auto res = s.find_or_prepare_insert(key);
      if (res.second) {
        s.emplace_at(res.first, std::forward<Args>(args)...);
      }
      return {s.iterator_at(res.first), res.second};
    }
    raw_hash_set& s;
  };

  template <bool do_destroy>
  struct InsertSlot {
    template <class K, class... Args>
    std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
      auto res = s.find_or_prepare_insert(key);
      if (res.second) {
        PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot);
      } else if (do_destroy) {
        PolicyTraits::destroy(&s.alloc_ref(), &slot);
      }
      return {s.iterator_at(res.first), res.second};
    }
    raw_hash_set& s;
    // Constructed slot. Either moved into place or destroyed.
    slot_type&& slot;
  };

  // Erases, but does not destroy, the value pointed to by `it`.
  //
  // This merely updates the pertinent control byte. This can be used in
  // conjunction with Policy::transfer to move the object to another place.
  void erase_meta_only(const_iterator it) {
    assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator");
    --size_;
    const size_t index = static_cast<size_t>(it.inner_.ctrl_ - ctrl_);
    const size_t index_before = (index - Group::kWidth) & capacity_;
    const auto empty_after = Group(it.inner_.ctrl_).MaskEmpty();
    const auto empty_before = Group(ctrl_ + index_before).MaskEmpty();

    // We count how many consecutive non empties we have to the right and to the
    // left of `it`. If the sum is >= kWidth then there is at least one probe
    // window that might have seen a full group.
    bool was_never_full =
        empty_before && empty_after &&
        static_cast<size_t>(empty_after.TrailingZeros() +
                            empty_before.LeadingZeros()) < Group::kWidth;

    SetCtrl(index, was_never_full ? ctrl_t::kEmpty : ctrl_t::kDeleted,
            capacity_, ctrl_, slots_, sizeof(slot_type));
    growth_left() += was_never_full;
    infoz().RecordErase();
  }

  // Allocates a backing array for `self` and initializes its control bytes.
  // This reads `capacity_` and updates all other fields based on the result of
  // the allocation.
  //
  // This does not free the currently held array; `capacity_` must be nonzero.
  void initialize_slots() {
    assert(capacity_);
    // Folks with custom allocators often make unwarranted assumptions about the
    // behavior of their classes vis-a-vis trivial destructability and what
    // calls they will or wont make.  Avoid sampling for people with custom
    // allocators to get us out of this mess.  This is not a hard guarantee but
    // a workaround while we plan the exact guarantee we want to provide.
    //
    // People are often sloppy with the exact type of their allocator (sometimes
    // it has an extra const or is missing the pair, but rebinds made it work
    // anyway).  To avoid the ambiguity, we work off SlotAlloc which we have
    // bound more carefully.
    if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value &&
        slots_ == nullptr) {
      infoz() = Sample(sizeof(slot_type));
    }

    char* mem = static_cast<char*>(Allocate<alignof(slot_type)>(
        &alloc_ref(),
        AllocSize(capacity_, sizeof(slot_type), alignof(slot_type))));
    ctrl_ = reinterpret_cast<ctrl_t*>(mem);
    slots_ = reinterpret_cast<slot_type*>(
        mem + SlotOffset(capacity_, alignof(slot_type)));
    ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type));
    reset_growth_left();
    infoz().RecordStorageChanged(size_, capacity_);
  }

  // Destroys all slots in the backing array, frees the backing array, and
  // clears all top-level book-keeping data.
  //
  // This essentially implements `map = raw_hash_set();`.
  void destroy_slots() {
    if (!capacity_) return;
    for (size_t i = 0; i != capacity_; ++i) {
      if (IsFull(ctrl_[i])) {
        PolicyTraits::destroy(&alloc_ref(), slots_ + i);
      }
    }

    // Unpoison before returning the memory to the allocator.
    SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
    Deallocate<alignof(slot_type)>(
        &alloc_ref(), ctrl_,
        AllocSize(capacity_, sizeof(slot_type), alignof(slot_type)));
    ctrl_ = EmptyGroup();
    slots_ = nullptr;
    size_ = 0;
    capacity_ = 0;
    growth_left() = 0;
  }

  void resize(size_t new_capacity) {
    assert(IsValidCapacity(new_capacity));
    auto* old_ctrl = ctrl_;
    auto* old_slots = slots_;
    const size_t old_capacity = capacity_;
    capacity_ = new_capacity;
    initialize_slots();

    size_t total_probe_length = 0;
    for (size_t i = 0; i != old_capacity; ++i) {
      if (IsFull(old_ctrl[i])) {
        size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
                                          PolicyTraits::element(old_slots + i));
        auto target = find_first_non_full(ctrl_, hash, capacity_);
        size_t new_i = target.offset;
        total_probe_length += target.probe_length;
        SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
        PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i);
      }
    }
    if (old_capacity) {
      SanitizerUnpoisonMemoryRegion(old_slots,
                                    sizeof(slot_type) * old_capacity);
      Deallocate<alignof(slot_type)>(
          &alloc_ref(), old_ctrl,
          AllocSize(old_capacity, sizeof(slot_type), alignof(slot_type)));
    }
    infoz().RecordRehash(total_probe_length);
  }

  // Prunes control bytes to remove as many tombstones as possible.
  //
  // See the comment on `rehash_and_grow_if_necessary()`.
  void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE {
    assert(IsValidCapacity(capacity_));
    assert(!is_small(capacity_));
    // Algorithm:
    // - mark all DELETED slots as EMPTY
    // - mark all FULL slots as DELETED
    // - for each slot marked as DELETED
    //     hash = Hash(element)
    //     target = find_first_non_full(hash)
    //     if target is in the same group
    //       mark slot as FULL
    //     else if target is EMPTY
    //       transfer element to target
    //       mark slot as EMPTY
    //       mark target as FULL
    //     else if target is DELETED
    //       swap current element with target element
    //       mark target as FULL
    //       repeat procedure for current slot with moved from element (target)
    ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_);
    alignas(slot_type) unsigned char raw[sizeof(slot_type)];
    size_t total_probe_length = 0;
    slot_type* slot = reinterpret_cast<slot_type*>(&raw);
    for (size_t i = 0; i != capacity_; ++i) {
      if (!IsDeleted(ctrl_[i])) continue;
      const size_t hash = PolicyTraits::apply(
          HashElement{hash_ref()}, PolicyTraits::element(slots_ + i));
      const FindInfo target = find_first_non_full(ctrl_, hash, capacity_);
      const size_t new_i = target.offset;
      total_probe_length += target.probe_length;

      // Verify if the old and new i fall within the same group wrt the hash.
      // If they do, we don't need to move the object as it falls already in the
      // best probe we can.
      const size_t probe_offset = probe(ctrl_, hash, capacity_).offset();
      const auto probe_index = [probe_offset, this](size_t pos) {
        return ((pos - probe_offset) & capacity_) / Group::kWidth;
      };

      // Element doesn't move.
      if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
        SetCtrl(i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
        continue;
      }
      if (IsEmpty(ctrl_[new_i])) {
        // Transfer element to the empty spot.
        // SetCtrl poisons/unpoisons the slots so we have to call it at the
        // right time.
        SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
        PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i);
        SetCtrl(i, ctrl_t::kEmpty, capacity_, ctrl_, slots_, sizeof(slot_type));
      } else {
        assert(IsDeleted(ctrl_[new_i]));
        SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
        // Until we are done rehashing, DELETED marks previously FULL slots.
        // Swap i and new_i elements.
        PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i);
        PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i);
        PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot);
        --i;  // repeat
      }
    }
    reset_growth_left();
    infoz().RecordRehash(total_probe_length);
  }

  // Called whenever the table *might* need to conditionally grow.
  //
  // This function is an optimization opportunity to perform a rehash even when
  // growth is unnecessary, because vacating tombstones is beneficial for
  // performance in the long-run.
  void rehash_and_grow_if_necessary() {
    if (capacity_ == 0) {
      resize(1);
    } else if (capacity_ > Group::kWidth &&
               // Do these calcuations in 64-bit to avoid overflow.
               size() * uint64_t{32} <= capacity_ * uint64_t{25}) {
      // Squash DELETED without growing if there is enough capacity.
      //
      // Rehash in place if the current size is <= 25/32 of capacity_.
      // Rationale for such a high factor: 1) drop_deletes_without_resize() is
      // faster than resize, and 2) it takes quite a bit of work to add
      // tombstones.  In the worst case, seems to take approximately 4
      // insert/erase pairs to create a single tombstone and so if we are
      // rehashing because of tombstones, we can afford to rehash-in-place as
      // long as we are reclaiming at least 1/8 the capacity without doing more
      // than 2X the work.  (Where "work" is defined to be size() for rehashing
      // or rehashing in place, and 1 for an insert or erase.)  But rehashing in
      // place is faster per operation than inserting or even doubling the size
      // of the table, so we actually afford to reclaim even less space from a
      // resize-in-place.  The decision is to rehash in place if we can reclaim
      // at about 1/8th of the usable capacity (specifically 3/28 of the
      // capacity) which means that the total cost of rehashing will be a small
      // fraction of the total work.
      //
      // Here is output of an experiment using the BM_CacheInSteadyState
      // benchmark running the old case (where we rehash-in-place only if we can
      // reclaim at least 7/16*capacity_) vs. this code (which rehashes in place
      // if we can recover 3/32*capacity_).
      //
      // Note that although in the worst-case number of rehashes jumped up from
      // 15 to 190, but the number of operations per second is almost the same.
      //
      // Abridged output of running BM_CacheInSteadyState benchmark from
      // raw_hash_set_benchmark.   N is the number of insert/erase operations.
      //
      //      | OLD (recover >= 7/16        | NEW (recover >= 3/32)
      // size |    N/s LoadFactor NRehashes |    N/s LoadFactor NRehashes
      //  448 | 145284       0.44        18 | 140118       0.44        19
      //  493 | 152546       0.24        11 | 151417       0.48        28
      //  538 | 151439       0.26        11 | 151152       0.53        38
      //  583 | 151765       0.28        11 | 150572       0.57        50
      //  628 | 150241       0.31        11 | 150853       0.61        66
      //  672 | 149602       0.33        12 | 150110       0.66        90
      //  717 | 149998       0.35        12 | 149531       0.70       129
      //  762 | 149836       0.37        13 | 148559       0.74       190
      //  807 | 149736       0.39        14 | 151107       0.39        14
      //  852 | 150204       0.42        15 | 151019       0.42        15
      drop_deletes_without_resize();
    } else {
      // Otherwise grow the container.
      resize(capacity_ * 2 + 1);
    }
  }

  bool has_element(const value_type& elem) const {
    size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem);
    auto seq = probe(ctrl_, hash, capacity_);
    while (true) {
      Group g{ctrl_ + seq.offset()};
      for (uint32_t i : g.Match(H2(hash))) {
        if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) ==
                              elem))
          return true;
      }
      if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return false;
      seq.next();
      assert(seq.index() <= capacity_ && "full table!");
    }
    return false;
  }

  // TODO(alkis): Optimize this assuming *this and that don't overlap.
  raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) {
    raw_hash_set tmp(std::move(that));
    swap(tmp);
    return *this;
  }
  raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) {
    raw_hash_set tmp(std::move(that), alloc_ref());
    swap(tmp);
    return *this;
  }

 protected:
  // Attempts to find `key` in the table; if it isn't found, returns a slot that
  // the value can be inserted into, with the control byte already set to
  // `key`'s H2.
  template <class K>
  std::pair<size_t, bool> find_or_prepare_insert(const K& key) {
    prefetch_heap_block();
    auto hash = hash_ref()(key);
    auto seq = probe(ctrl_, hash, capacity_);
    while (true) {
      Group g{ctrl_ + seq.offset()};
      for (uint32_t i : g.Match(H2(hash))) {
        if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
                EqualElement<K>{key, eq_ref()},
                PolicyTraits::element(slots_ + seq.offset(i)))))
          return {seq.offset(i), false};
      }
      if (ABSL_PREDICT_TRUE(g.MaskEmpty())) break;
      seq.next();
      assert(seq.index() <= capacity_ && "full table!");
    }
    return {prepare_insert(hash), true};
  }

  // Given the hash of a value not currently in the table, finds the next
  // viable slot index to insert it at.
  //
  // REQUIRES: At least one non-full slot available.
  size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
    auto target = find_first_non_full(ctrl_, hash, capacity_);
    if (ABSL_PREDICT_FALSE(growth_left() == 0 &&
                           !IsDeleted(ctrl_[target.offset]))) {
      rehash_and_grow_if_necessary();
      target = find_first_non_full(ctrl_, hash, capacity_);
    }
    ++size_;
    growth_left() -= IsEmpty(ctrl_[target.offset]);
    SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_,
            sizeof(slot_type));
    infoz().RecordInsert(hash, target.probe_length);
    return target.offset;
  }

  // Constructs the value in the space pointed by the iterator. This only works
  // after an unsuccessful find_or_prepare_insert() and before any other
  // modifications happen in the raw_hash_set.
  //
  // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where
  // k is the key decomposed from `forward<Args>(args)...`, and the bool
  // returned by find_or_prepare_insert(k) was true.
  // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
  template <class... Args>
  void emplace_at(size_t i, Args&&... args) {
    PolicyTraits::construct(&alloc_ref(), slots_ + i,
                            std::forward<Args>(args)...);

    assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) ==
               iterator_at(i) &&
           "constructed value does not match the lookup key");
  }

  iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; }
  const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; }

 private:
  friend struct RawHashSetTestOnlyAccess;

  void reset_growth_left() {
    growth_left() = CapacityToGrowth(capacity()) - size_;
  }

  // The number of slots we can still fill without needing to rehash.
  //
  // This is stored separately due to tombstones: we do not include tombstones
  // in the growth capacity, because we'd like to rehash when the table is
  // otherwise filled with tombstones: otherwise, probe sequences might get
  // unacceptably long without triggering a rehash. Callers can also force a
  // rehash via the standard `rehash(0)`, which will recompute this value as a
  // side-effect.
  //
  // See `CapacityToGrowth()`.
  size_t& growth_left() { return settings_.template get<0>(); }

  // Prefetch the heap-allocated memory region to resolve potential TLB misses.
  // This is intended to overlap with execution of calculating the hash for a
  // key.
  void prefetch_heap_block() const {
    base_internal::PrefetchT2(ctrl_);
  }

  HashtablezInfoHandle& infoz() { return settings_.template get<1>(); }

  hasher& hash_ref() { return settings_.template get<2>(); }
  const hasher& hash_ref() const { return settings_.template get<2>(); }
  key_equal& eq_ref() { return settings_.template get<3>(); }
  const key_equal& eq_ref() const { return settings_.template get<3>(); }
  allocator_type& alloc_ref() { return settings_.template get<4>(); }
  const allocator_type& alloc_ref() const {
    return settings_.template get<4>();
  }

  // TODO(alkis): Investigate removing some of these fields:
  // - ctrl/slots can be derived from each other
  // - size can be moved into the slot array

  // The control bytes (and, also, a pointer to the base of the backing array).
  //
  // This contains `capacity_ + 1 + NumClonedBytes()` entries, even
  // when the table is empty (hence EmptyGroup).
  ctrl_t* ctrl_ = EmptyGroup();
  // The beginning of the slots, located at `SlotOffset()` bytes after
  // `ctrl_`. May be null for empty tables.
  slot_type* slots_ = nullptr;

  // The number of filled slots.
  size_t size_ = 0;

  // The total number of available slots.
  size_t capacity_ = 0;
  absl::container_internal::CompressedTuple<size_t /* growth_left */,
                                            HashtablezInfoHandle, hasher,
                                            key_equal, allocator_type>
      settings_{0u, HashtablezInfoHandle{}, hasher{}, key_equal{},
                allocator_type{}};
};

// Erases all elements that satisfy the predicate `pred` from the container `c`.
template <typename P, typename H, typename E, typename A, typename Predicate>
typename raw_hash_set<P, H, E, A>::size_type EraseIf(
    Predicate& pred, raw_hash_set<P, H, E, A>* c) {
  const auto initial_size = c->size();
  for (auto it = c->begin(), last = c->end(); it != last;) {
    if (pred(*it)) {
      c->erase(it++);
    } else {
      ++it;
    }
  }
  return initial_size - c->size();
}

namespace hashtable_debug_internal {
template <typename Set>
struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
  using Traits = typename Set::PolicyTraits;
  using Slot = typename Traits::slot_type;

  static size_t GetNumProbes(const Set& set,
                             const typename Set::key_type& key) {
    size_t num_probes = 0;
    size_t hash = set.hash_ref()(key);
    auto seq = probe(set.ctrl_, hash, set.capacity_);
    while (true) {
      container_internal::Group g{set.ctrl_ + seq.offset()};
      for (uint32_t i : g.Match(container_internal::H2(hash))) {
        if (Traits::apply(
                typename Set::template EqualElement<typename Set::key_type>{
                    key, set.eq_ref()},
                Traits::element(set.slots_ + seq.offset(i))))
          return num_probes;
        ++num_probes;
      }
      if (g.MaskEmpty()) return num_probes;
      seq.next();
      ++num_probes;
    }
  }

  static size_t AllocatedByteSize(const Set& c) {
    size_t capacity = c.capacity_;
    if (capacity == 0) return 0;
    size_t m = AllocSize(capacity, sizeof(Slot), alignof(Slot));

    size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
    if (per_slot != ~size_t{}) {
      m += per_slot * c.size();
    } else {
      for (size_t i = 0; i != capacity; ++i) {
        if (container_internal::IsFull(c.ctrl_[i])) {
          m += Traits::space_used(c.slots_ + i);
        }
      }
    }
    return m;
  }

  static size_t LowerBoundAllocatedByteSize(size_t size) {
    size_t capacity = GrowthToLowerboundCapacity(size);
    if (capacity == 0) return 0;
    size_t m =
        AllocSize(NormalizeCapacity(capacity), sizeof(Slot), alignof(Slot));
    size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
    if (per_slot != ~size_t{}) {
      m += per_slot * size;
    }
    return m;
  }
};

}  // namespace hashtable_debug_internal
}  // namespace container_internal
ABSL_NAMESPACE_END
}  // namespace absl

#undef ABSL_INTERNAL_ASSERT_IS_FULL

#endif  // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_