1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/raw_hash_set.h"
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstring>
#include "absl/base/config.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/hash/hash.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
// A single block of empty control bytes for tables without any slots allocated.
// This enables removing a branch in the hot path of find().
alignas(16) ABSL_CONST_INIT ABSL_DLL const ctrl_t kEmptyGroup[16] = {
ctrl_t::kSentinel, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty};
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr size_t Group::kWidth;
#endif
namespace {
// Returns "random" seed.
inline size_t RandomSeed() {
#ifdef ABSL_HAVE_THREAD_LOCAL
static thread_local size_t counter = 0;
// On Linux kernels >= 5.4 the MSAN runtime has a false-positive when
// accessing thread local storage data from loaded libraries
// (https://github.com/google/sanitizers/issues/1265), for this reason counter
// needs to be annotated as initialized.
ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(&counter, sizeof(size_t));
size_t value = ++counter;
#else // ABSL_HAVE_THREAD_LOCAL
static std::atomic<size_t> counter(0);
size_t value = counter.fetch_add(1, std::memory_order_relaxed);
#endif // ABSL_HAVE_THREAD_LOCAL
return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter));
}
} // namespace
GenerationType* EmptyGeneration() {
if (SwisstableGenerationsEnabled()) {
constexpr size_t kNumEmptyGenerations = 1024;
static constexpr GenerationType kEmptyGenerations[kNumEmptyGenerations]{};
return const_cast<GenerationType*>(
&kEmptyGenerations[RandomSeed() % kNumEmptyGenerations]);
}
return nullptr;
}
bool CommonFieldsGenerationInfoEnabled::
should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl,
size_t capacity) const {
if (reserved_growth_ == kReservedGrowthJustRanOut) return true;
if (reserved_growth_ > 0) return false;
// Note: we can't use the abseil-random library because abseil-random
// depends on swisstable. We want to return true with probability
// `min(1, RehashProbabilityConstant() / capacity())`. In order to do this,
// we probe based on a random hash and see if the offset is less than
// RehashProbabilityConstant().
return probe(ctrl, capacity, absl::HashOf(RandomSeed())).offset() <
RehashProbabilityConstant();
}
bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl) {
// To avoid problems with weak hashes and single bit tests, we use % 13.
// TODO(kfm,sbenza): revisit after we do unconditional mixing
return (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6;
}
void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity) {
assert(ctrl[capacity] == ctrl_t::kSentinel);
assert(IsValidCapacity(capacity));
for (ctrl_t* pos = ctrl; pos < ctrl + capacity; pos += Group::kWidth) {
Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos);
}
// Copy the cloned ctrl bytes.
std::memcpy(ctrl + capacity + 1, ctrl, NumClonedBytes());
ctrl[capacity] = ctrl_t::kSentinel;
}
// Extern template instantiation for inline function.
template FindInfo find_first_non_full(const CommonFields&, size_t);
FindInfo find_first_non_full_outofline(const CommonFields& common,
size_t hash) {
return find_first_non_full(common, hash);
}
// Returns the address of the ith slot in slots where each slot occupies
// slot_size.
static inline void* SlotAddress(void* slot_array, size_t slot,
size_t slot_size) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot_array) +
(slot * slot_size));
}
// Returns the address of the slot just after slot assuming each slot has the
// specified size.
static inline void* NextSlot(void* slot, size_t slot_size) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) + slot_size);
}
// Returns the address of the slot just before slot assuming each slot has the
// specified size.
static inline void* PrevSlot(void* slot, size_t slot_size) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) - slot_size);
}
void DropDeletesWithoutResize(CommonFields& common,
const PolicyFunctions& policy, void* tmp_space) {
void* set = &common;
void* slot_array = common.slots();
const size_t capacity = common.capacity();
assert(IsValidCapacity(capacity));
assert(!is_small(capacity));
// Algorithm:
// - mark all DELETED slots as EMPTY
// - mark all FULL slots as DELETED
// - for each slot marked as DELETED
// hash = Hash(element)
// target = find_first_non_full(hash)
// if target is in the same group
// mark slot as FULL
// else if target is EMPTY
// transfer element to target
// mark slot as EMPTY
// mark target as FULL
// else if target is DELETED
// swap current element with target element
// mark target as FULL
// repeat procedure for current slot with moved from element (target)
ctrl_t* ctrl = common.control();
ConvertDeletedToEmptyAndFullToDeleted(ctrl, capacity);
auto hasher = policy.hash_slot;
auto transfer = policy.transfer;
const size_t slot_size = policy.slot_size;
size_t total_probe_length = 0;
void* slot_ptr = SlotAddress(slot_array, 0, slot_size);
for (size_t i = 0; i != capacity;
++i, slot_ptr = NextSlot(slot_ptr, slot_size)) {
assert(slot_ptr == SlotAddress(slot_array, i, slot_size));
if (!IsDeleted(ctrl[i])) continue;
const size_t hash = (*hasher)(set, slot_ptr);
const FindInfo target = find_first_non_full(common, hash);
const size_t new_i = target.offset;
total_probe_length += target.probe_length;
// Verify if the old and new i fall within the same group wrt the hash.
// If they do, we don't need to move the object as it falls already in the
// best probe we can.
const size_t probe_offset = probe(common, hash).offset();
const auto probe_index = [probe_offset, capacity](size_t pos) {
return ((pos - probe_offset) & capacity) / Group::kWidth;
};
// Element doesn't move.
if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
SetCtrl(common, i, H2(hash), slot_size);
continue;
}
void* new_slot_ptr = SlotAddress(slot_array, new_i, slot_size);
if (IsEmpty(ctrl[new_i])) {
// Transfer element to the empty spot.
// SetCtrl poisons/unpoisons the slots so we have to call it at the
// right time.
SetCtrl(common, new_i, H2(hash), slot_size);
(*transfer)(set, new_slot_ptr, slot_ptr);
SetCtrl(common, i, ctrl_t::kEmpty, slot_size);
} else {
assert(IsDeleted(ctrl[new_i]));
SetCtrl(common, new_i, H2(hash), slot_size);
// Until we are done rehashing, DELETED marks previously FULL slots.
// Swap i and new_i elements.
(*transfer)(set, tmp_space, new_slot_ptr);
(*transfer)(set, new_slot_ptr, slot_ptr);
(*transfer)(set, slot_ptr, tmp_space);
// repeat the processing of the ith slot
--i;
slot_ptr = PrevSlot(slot_ptr, slot_size);
}
}
ResetGrowthLeft(common);
common.infoz().RecordRehash(total_probe_length);
}
void EraseMetaOnly(CommonFields& c, ctrl_t* it, size_t slot_size) {
assert(IsFull(*it) && "erasing a dangling iterator");
c.set_size(c.size() - 1);
const auto index = static_cast<size_t>(it - c.control());
const size_t index_before = (index - Group::kWidth) & c.capacity();
const auto empty_after = Group(it).MaskEmpty();
const auto empty_before = Group(c.control() + index_before).MaskEmpty();
// We count how many consecutive non empties we have to the right and to the
// left of `it`. If the sum is >= kWidth then there is at least one probe
// window that might have seen a full group.
bool was_never_full = empty_before && empty_after &&
static_cast<size_t>(empty_after.TrailingZeros()) +
empty_before.LeadingZeros() <
Group::kWidth;
SetCtrl(c, index, was_never_full ? ctrl_t::kEmpty : ctrl_t::kDeleted,
slot_size);
c.set_growth_left(c.growth_left() + (was_never_full ? 1 : 0));
c.infoz().RecordErase();
}
void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy,
bool reuse) {
c.set_size(0);
if (reuse) {
ResetCtrl(c, policy.slot_size);
c.infoz().RecordStorageChanged(0, c.capacity());
} else {
void* set = &c;
(*policy.dealloc)(set, policy, c.control(), c.slots(), c.capacity());
c.set_control(EmptyGroup());
c.set_generation_ptr(EmptyGeneration());
c.set_slots(nullptr);
c.set_capacity(0);
c.set_growth_left(0);
c.infoz().RecordClearedReservation();
assert(c.size() == 0);
c.infoz().RecordStorageChanged(0, 0);
}
}
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
|