summaryrefslogtreecommitdiff
path: root/absl/container/internal/compressed_tuple.h
blob: bb3471f5d747931b19b9075abeb5d4e3266730b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Helper class to perform the Empty Base Optimization.
// Ts can contain classes and non-classes, empty or not. For the ones that
// are empty classes, we perform the optimization. If all types in Ts are empty
// classes, then CompressedTuple<Ts...> is itself an empty class.
//
// To access the members, use member get<N>() function.
//
// Eg:
//   absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2,
//                                                                    t3);
//   assert(value.get<0>() == 7);
//   T1& t1 = value.get<1>();
//   const T2& t2 = value.get<2>();
//   ...
//
// https://en.cppreference.com/w/cpp/language/ebo

#ifndef ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_
#define ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_

#include <tuple>
#include <type_traits>
#include <utility>

#include "absl/utility/utility.h"

#if defined(_MSC_VER) && !defined(__NVCC__)
// We need to mark these classes with this declspec to ensure that
// CompressedTuple happens.
#define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC __declspec(empty_bases)
#else
#define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC
#endif

namespace absl {
namespace container_internal {

template <typename... Ts>
class CompressedTuple;

namespace internal_compressed_tuple {

template <typename D, size_t I>
struct Elem;
template <typename... B, size_t I>
struct Elem<CompressedTuple<B...>, I>
    : std::tuple_element<I, std::tuple<B...>> {};
template <typename D, size_t I>
using ElemT = typename Elem<D, I>::type;

// Use the __is_final intrinsic if available. Where it's not available, classes
// declared with the 'final' specifier cannot be used as CompressedTuple
// elements.
// TODO(sbenza): Replace this with std::is_final in C++14.
template <typename T>
constexpr bool IsFinal() {
#if defined(__clang__) || defined(__GNUC__)
  return __is_final(T);
#else
  return false;
#endif
}

template <typename T>
constexpr bool ShouldUseBase() {
  return std::is_class<T>::value && std::is_empty<T>::value && !IsFinal<T>();
}

// The storage class provides two specializations:
//  - For empty classes, it stores T as a base class.
//  - For everything else, it stores T as a member.
template <typename D, size_t I, bool = ShouldUseBase<ElemT<D, I>>()>
struct Storage {
  using T = ElemT<D, I>;
  T value;
  constexpr Storage() = default;
  explicit constexpr Storage(T&& v) : value(absl::forward<T>(v)) {}
  constexpr const T& get() const& { return value; }
  T& get() & { return value; }
  constexpr const T&& get() const&& { return absl::move(*this).value; }
  T&& get() && { return std::move(*this).value; }
};

template <typename D, size_t I>
struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC Storage<D, I, true>
    : ElemT<D, I> {
  using T = internal_compressed_tuple::ElemT<D, I>;
  constexpr Storage() = default;
  explicit constexpr Storage(T&& v) : T(absl::forward<T>(v)) {}
  constexpr const T& get() const& { return *this; }
  T& get() & { return *this; }
  constexpr const T&& get() const&& { return absl::move(*this); }
  T&& get() && { return std::move(*this); }
};

template <typename D, typename I>
struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl;

template <typename... Ts, size_t... I>
struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC
    CompressedTupleImpl<CompressedTuple<Ts...>, absl::index_sequence<I...>>
    // We use the dummy identity function through std::integral_constant to
    // convince MSVC of accepting and expanding I in that context. Without it
    // you would get:
    //   error C3548: 'I': parameter pack cannot be used in this context
    : Storage<CompressedTuple<Ts...>,
              std::integral_constant<size_t, I>::value>... {
  constexpr CompressedTupleImpl() = default;
  explicit constexpr CompressedTupleImpl(Ts&&... args)
      : Storage<CompressedTuple<Ts...>, I>(absl::forward<Ts>(args))... {}
};

}  // namespace internal_compressed_tuple

// Helper class to perform the Empty Base Class Optimization.
// Ts can contain classes and non-classes, empty or not. For the ones that
// are empty classes, we perform the CompressedTuple. If all types in Ts are
// empty classes, then CompressedTuple<Ts...> is itself an empty class.
//
// To access the members, use member .get<N>() function.
//
// Eg:
//   absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2,
//                                                                    t3);
//   assert(value.get<0>() == 7);
//   T1& t1 = value.get<1>();
//   const T2& t2 = value.get<2>();
//   ...
//
// https://en.cppreference.com/w/cpp/language/ebo
template <typename... Ts>
class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple
    : private internal_compressed_tuple::CompressedTupleImpl<
          CompressedTuple<Ts...>, absl::index_sequence_for<Ts...>> {
 private:
  template <int I>
  using ElemT = internal_compressed_tuple::ElemT<CompressedTuple, I>;

 public:
  constexpr CompressedTuple() = default;
  explicit constexpr CompressedTuple(Ts... base)
      : CompressedTuple::CompressedTupleImpl(absl::forward<Ts>(base)...) {}

  template <int I>
  ElemT<I>& get() & {
    return internal_compressed_tuple::Storage<CompressedTuple, I>::get();
  }

  template <int I>
  constexpr const ElemT<I>& get() const& {
    return internal_compressed_tuple::Storage<CompressedTuple, I>::get();
  }

  template <int I>
  ElemT<I>&& get() && {
    return std::move(*this)
        .internal_compressed_tuple::template Storage<CompressedTuple, I>::get();
  }

  template <int I>
  constexpr const ElemT<I>&& get() const&& {
    return absl::move(*this)
        .internal_compressed_tuple::template Storage<CompressedTuple, I>::get();
  }
};

// Explicit specialization for a zero-element tuple
// (needed to avoid ambiguous overloads for the default constructor).
template <>
class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple<> {};

}  // namespace container_internal
}  // namespace absl

#undef ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC

#endif  // ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_