1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// A btree implementation of the STL set and map interfaces. A btree is smaller
// and generally also faster than STL set/map (refer to the benchmarks below).
// The red-black tree implementation of STL set/map has an overhead of 3
// pointers (left, right and parent) plus the node color information for each
// stored value. So a set<int32_t> consumes 40 bytes for each value stored in
// 64-bit mode. This btree implementation stores multiple values on fixed
// size nodes (usually 256 bytes) and doesn't store child pointers for leaf
// nodes. The result is that a btree_set<int32_t> may use much less memory per
// stored value. For the random insertion benchmark in btree_bench.cc, a
// btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
//
// The packing of multiple values on to each node of a btree has another effect
// besides better space utilization: better cache locality due to fewer cache
// lines being accessed. Better cache locality translates into faster
// operations.
//
// CAVEATS
//
// Insertions and deletions on a btree can cause splitting, merging or
// rebalancing of btree nodes. And even without these operations, insertions
// and deletions on a btree will move values around within a node. In both
// cases, the result is that insertions and deletions can invalidate iterators
// pointing to values other than the one being inserted/deleted. Therefore, this
// container does not provide pointer stability. This is notably different from
// STL set/map which takes care to not invalidate iterators on insert/erase
// except, of course, for iterators pointing to the value being erased. A
// partial workaround when erasing is available: erase() returns an iterator
// pointing to the item just after the one that was erased (or end() if none
// exists).
#ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
#define ABSL_CONTAINER_INTERNAL_BTREE_H_
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <functional>
#include <iterator>
#include <limits>
#include <new>
#include <string>
#include <type_traits>
#include <utility>
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/container/internal/common.h"
#include "absl/container/internal/common_policy_traits.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/layout.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/cord.h"
#include "absl/strings/string_view.h"
#include "absl/types/compare.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
#error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set
#elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
defined(ABSL_HAVE_MEMORY_SANITIZER)
// When compiled in sanitizer mode, we add generation integers to the nodes and
// iterators. When iterators are used, we validate that the container has not
// been mutated since the iterator was constructed.
#define ABSL_BTREE_ENABLE_GENERATIONS
#endif
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
constexpr bool BtreeGenerationsEnabled() { return true; }
#else
constexpr bool BtreeGenerationsEnabled() { return false; }
#endif
template <typename Compare, typename T, typename U>
using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>;
// A helper class that indicates if the Compare parameter is a key-compare-to
// comparator.
template <typename Compare, typename T>
using btree_is_key_compare_to =
std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>;
struct StringBtreeDefaultLess {
using is_transparent = void;
StringBtreeDefaultLess() = default;
// Compatibility constructor.
StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT
StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT
// Allow converting to std::less for use in key_comp()/value_comp().
explicit operator std::less<std::string>() const { return {}; }
explicit operator std::less<absl::string_view>() const { return {}; }
explicit operator std::less<absl::Cord>() const { return {}; }
absl::weak_ordering operator()(absl::string_view lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
}
StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT
absl::weak_ordering operator()(const absl::Cord &lhs,
const absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
}
absl::weak_ordering operator()(const absl::Cord &lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
}
absl::weak_ordering operator()(absl::string_view lhs,
const absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
}
};
struct StringBtreeDefaultGreater {
using is_transparent = void;
StringBtreeDefaultGreater() = default;
StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT
StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT
// Allow converting to std::greater for use in key_comp()/value_comp().
explicit operator std::greater<std::string>() const { return {}; }
explicit operator std::greater<absl::string_view>() const { return {}; }
explicit operator std::greater<absl::Cord>() const { return {}; }
absl::weak_ordering operator()(absl::string_view lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
}
StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT
absl::weak_ordering operator()(const absl::Cord &lhs,
const absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
}
absl::weak_ordering operator()(const absl::Cord &lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs));
}
absl::weak_ordering operator()(absl::string_view lhs,
const absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
}
};
// See below comments for checked_compare.
template <typename Compare, bool is_class = std::is_class<Compare>::value>
struct checked_compare_base : Compare {
using Compare::Compare;
explicit checked_compare_base(Compare c) : Compare(std::move(c)) {}
const Compare &comp() const { return *this; }
};
template <typename Compare>
struct checked_compare_base<Compare, false> {
explicit checked_compare_base(Compare c) : compare(std::move(c)) {}
const Compare &comp() const { return compare; }
Compare compare;
};
// A mechanism for opting out of checked_compare for use only in btree_test.cc.
struct BtreeTestOnlyCheckedCompareOptOutBase {};
// A helper class to adapt the specified comparator for two use cases:
// (1) When using common Abseil string types with common comparison functors,
// convert a boolean comparison into a three-way comparison that returns an
// `absl::weak_ordering`. This helper class is specialized for
// less<std::string>, greater<std::string>, less<string_view>,
// greater<string_view>, less<absl::Cord>, and greater<absl::Cord>.
// (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see
// https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever
// a comparison is made, we will make assertions to verify that the comparator
// is valid.
template <typename Compare, typename Key>
struct key_compare_adapter {
// Inherit from checked_compare_base to support function pointers and also
// keep empty-base-optimization (EBO) support for classes.
// Note: we can't use CompressedTuple here because that would interfere
// with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a
// CompressedTuple and nested `CompressedTuple`s don't support EBO.
// TODO(b/214288561): use CompressedTuple instead once it supports EBO for
// nested `CompressedTuple`s.
struct checked_compare : checked_compare_base<Compare> {
private:
using Base = typename checked_compare::checked_compare_base;
using Base::comp;
// If possible, returns whether `t` is equivalent to itself. We can only do
// this for `Key`s because we can't be sure that it's safe to call
// `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a
// compilation failure inside the implementation of the comparison operator.
bool is_self_equivalent(const Key &k) const {
// Note: this works for both boolean and three-way comparators.
return comp()(k, k) == 0;
}
// If we can't compare `t` with itself, returns true unconditionally.
template <typename T>
bool is_self_equivalent(const T &) const {
return true;
}
public:
using Base::Base;
checked_compare(Compare comp) : Base(std::move(comp)) {} // NOLINT
// Allow converting to Compare for use in key_comp()/value_comp().
explicit operator Compare() const { return comp(); }
template <typename T, typename U,
absl::enable_if_t<
std::is_same<bool, compare_result_t<Compare, T, U>>::value,
int> = 0>
bool operator()(const T &lhs, const U &rhs) const {
// NOTE: if any of these assertions fail, then the comparator does not
// establish a strict-weak-ordering (see
// https://en.cppreference.com/w/cpp/named_req/Compare).
assert(is_self_equivalent(lhs));
assert(is_self_equivalent(rhs));
const bool lhs_comp_rhs = comp()(lhs, rhs);
assert(!lhs_comp_rhs || !comp()(rhs, lhs));
return lhs_comp_rhs;
}
template <
typename T, typename U,
absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>,
absl::weak_ordering>::value,
int> = 0>
absl::weak_ordering operator()(const T &lhs, const U &rhs) const {
// NOTE: if any of these assertions fail, then the comparator does not
// establish a strict-weak-ordering (see
// https://en.cppreference.com/w/cpp/named_req/Compare).
assert(is_self_equivalent(lhs));
assert(is_self_equivalent(rhs));
const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs);
#ifndef NDEBUG
const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs);
if (lhs_comp_rhs > 0) {
assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0");
} else if (lhs_comp_rhs == 0) {
assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0");
} else {
assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0");
}
#endif
return lhs_comp_rhs;
}
};
using type = absl::conditional_t<
std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value,
Compare, checked_compare>;
};
template <>
struct key_compare_adapter<std::less<std::string>, std::string> {
using type = StringBtreeDefaultLess;
};
template <>
struct key_compare_adapter<std::greater<std::string>, std::string> {
using type = StringBtreeDefaultGreater;
};
template <>
struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> {
using type = StringBtreeDefaultLess;
};
template <>
struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> {
using type = StringBtreeDefaultGreater;
};
template <>
struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> {
using type = StringBtreeDefaultLess;
};
template <>
struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> {
using type = StringBtreeDefaultGreater;
};
// Detects an 'absl_btree_prefer_linear_node_search' member. This is
// a protocol used as an opt-in or opt-out of linear search.
//
// For example, this would be useful for key types that wrap an integer
// and define their own cheap operator<(). For example:
//
// class K {
// public:
// using absl_btree_prefer_linear_node_search = std::true_type;
// ...
// private:
// friend bool operator<(K a, K b) { return a.k_ < b.k_; }
// int k_;
// };
//
// btree_map<K, V> m; // Uses linear search
//
// If T has the preference tag, then it has a preference.
// Btree will use the tag's truth value.
template <typename T, typename = void>
struct has_linear_node_search_preference : std::false_type {};
template <typename T, typename = void>
struct prefers_linear_node_search : std::false_type {};
template <typename T>
struct has_linear_node_search_preference<
T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
: std::true_type {};
template <typename T>
struct prefers_linear_node_search<
T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
: T::absl_btree_prefer_linear_node_search {};
template <typename Compare, typename Key>
constexpr bool compare_has_valid_result_type() {
using compare_result_type = compare_result_t<Compare, Key, Key>;
return std::is_same<compare_result_type, bool>::value ||
std::is_convertible<compare_result_type, absl::weak_ordering>::value;
}
template <typename original_key_compare, typename value_type>
class map_value_compare {
template <typename Params>
friend class btree;
// Note: this `protected` is part of the API of std::map::value_compare. See
// https://en.cppreference.com/w/cpp/container/map/value_compare.
protected:
explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {}
original_key_compare comp; // NOLINT
public:
auto operator()(const value_type &lhs, const value_type &rhs) const
-> decltype(comp(lhs.first, rhs.first)) {
return comp(lhs.first, rhs.first);
}
};
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
bool IsMulti, bool IsMap, typename SlotPolicy>
struct common_params : common_policy_traits<SlotPolicy> {
using original_key_compare = Compare;
// If Compare is a common comparator for a string-like type, then we adapt it
// to use heterogeneous lookup and to be a key-compare-to comparator.
// We also adapt the comparator to diagnose invalid comparators in debug mode.
// We disable this when `Compare` is invalid in a way that will cause
// adaptation to fail (having invalid return type) so that we can give a
// better compilation failure in static_assert_validation. If we don't do
// this, then there will be cascading compilation failures that are confusing
// for users.
using key_compare =
absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(),
Compare,
typename key_compare_adapter<Compare, Key>::type>;
static constexpr bool kIsKeyCompareStringAdapted =
std::is_same<key_compare, StringBtreeDefaultLess>::value ||
std::is_same<key_compare, StringBtreeDefaultGreater>::value;
static constexpr bool kIsKeyCompareTransparent =
IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted;
// A type which indicates if we have a key-compare-to functor or a plain old
// key-compare functor.
using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
using allocator_type = Alloc;
using key_type = Key;
using size_type = size_t;
using difference_type = ptrdiff_t;
using slot_policy = SlotPolicy;
using slot_type = typename slot_policy::slot_type;
using value_type = typename slot_policy::value_type;
using init_type = typename slot_policy::mutable_value_type;
using pointer = value_type *;
using const_pointer = const value_type *;
using reference = value_type &;
using const_reference = const value_type &;
using value_compare =
absl::conditional_t<IsMap,
map_value_compare<original_key_compare, value_type>,
original_key_compare>;
using is_map_container = std::integral_constant<bool, IsMap>;
// For the given lookup key type, returns whether we can have multiple
// equivalent keys in the btree. If this is a multi-container, then we can.
// Otherwise, we can have multiple equivalent keys only if all of the
// following conditions are met:
// - The comparator is transparent.
// - The lookup key type is not the same as key_type.
// - The comparator is not a StringBtreeDefault{Less,Greater} comparator
// that we know has the same equivalence classes for all lookup types.
template <typename LookupKey>
constexpr static bool can_have_multiple_equivalent_keys() {
return IsMulti || (IsTransparent<key_compare>::value &&
!std::is_same<LookupKey, Key>::value &&
!kIsKeyCompareStringAdapted);
}
enum {
kTargetNodeSize = TargetNodeSize,
// Upper bound for the available space for slots. This is largest for leaf
// nodes, which have overhead of at least a pointer + 4 bytes (for storing
// 3 field_types and an enum).
kNodeSlotSpace = TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
};
// This is an integral type large enough to hold as many slots as will fit a
// node of TargetNodeSize bytes.
using node_count_type =
absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) >
(std::numeric_limits<uint8_t>::max)()),
uint16_t, uint8_t>; // NOLINT
};
// An adapter class that converts a lower-bound compare into an upper-bound
// compare. Note: there is no need to make a version of this adapter specialized
// for key-compare-to functors because the upper-bound (the first value greater
// than the input) is never an exact match.
template <typename Compare>
struct upper_bound_adapter {
explicit upper_bound_adapter(const Compare &c) : comp(c) {}
template <typename K1, typename K2>
bool operator()(const K1 &a, const K2 &b) const {
// Returns true when a is not greater than b.
return !compare_internal::compare_result_as_less_than(comp(b, a));
}
private:
Compare comp;
};
enum class MatchKind : uint8_t { kEq, kNe };
template <typename V, bool IsCompareTo>
struct SearchResult {
V value;
MatchKind match;
static constexpr bool HasMatch() { return true; }
bool IsEq() const { return match == MatchKind::kEq; }
};
// When we don't use CompareTo, `match` is not present.
// This ensures that callers can't use it accidentally when it provides no
// useful information.
template <typename V>
struct SearchResult<V, false> {
SearchResult() {}
explicit SearchResult(V v) : value(v) {}
SearchResult(V v, MatchKind /*match*/) : value(v) {}
V value;
static constexpr bool HasMatch() { return false; }
static constexpr bool IsEq() { return false; }
};
// A node in the btree holding. The same node type is used for both internal
// and leaf nodes in the btree, though the nodes are allocated in such a way
// that the children array is only valid in internal nodes.
template <typename Params>
class btree_node {
using is_key_compare_to = typename Params::is_key_compare_to;
using field_type = typename Params::node_count_type;
using allocator_type = typename Params::allocator_type;
using slot_type = typename Params::slot_type;
using original_key_compare = typename Params::original_key_compare;
public:
using params_type = Params;
using key_type = typename Params::key_type;
using value_type = typename Params::value_type;
using pointer = typename Params::pointer;
using const_pointer = typename Params::const_pointer;
using reference = typename Params::reference;
using const_reference = typename Params::const_reference;
using key_compare = typename Params::key_compare;
using size_type = typename Params::size_type;
using difference_type = typename Params::difference_type;
// Btree decides whether to use linear node search as follows:
// - If the comparator expresses a preference, use that.
// - If the key expresses a preference, use that.
// - If the key is arithmetic and the comparator is std::less or
// std::greater, choose linear.
// - Otherwise, choose binary.
// TODO(ezb): Might make sense to add condition(s) based on node-size.
using use_linear_search = std::integral_constant<
bool, has_linear_node_search_preference<original_key_compare>::value
? prefers_linear_node_search<original_key_compare>::value
: has_linear_node_search_preference<key_type>::value
? prefers_linear_node_search<key_type>::value
: std::is_arithmetic<key_type>::value &&
(std::is_same<std::less<key_type>,
original_key_compare>::value ||
std::is_same<std::greater<key_type>,
original_key_compare>::value)>;
// This class is organized by absl::container_internal::Layout as if it had
// the following structure:
// // A pointer to the node's parent.
// btree_node *parent;
//
// // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a
// // generation integer in order to check that when iterators are
// // used, they haven't been invalidated already. Only the generation on
// // the root is used, but we have one on each node because whether a node
// // is root or not can change.
// uint32_t generation;
//
// // The position of the node in the node's parent.
// field_type position;
// // The index of the first populated value in `values`.
// // TODO(ezb): right now, `start` is always 0. Update insertion/merge
// // logic to allow for floating storage within nodes.
// field_type start;
// // The index after the last populated value in `values`. Currently, this
// // is the same as the count of values.
// field_type finish;
// // The maximum number of values the node can hold. This is an integer in
// // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf
// // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
// // nodes (even though there are still kNodeSlots values in the node).
// // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
// // to free extra bits for is_root, etc.
// field_type max_count;
//
// // The array of values. The capacity is `max_count` for leaf nodes and
// // kNodeSlots for internal nodes. Only the values in
// // [start, finish) have been initialized and are valid.
// slot_type values[max_count];
//
// // The array of child pointers. The keys in children[i] are all less
// // than key(i). The keys in children[i + 1] are all greater than key(i).
// // There are 0 children for leaf nodes and kNodeSlots + 1 children for
// // internal nodes.
// btree_node *children[kNodeSlots + 1];
//
// This class is only constructed by EmptyNodeType. Normally, pointers to the
// layout above are allocated, cast to btree_node*, and de-allocated within
// the btree implementation.
~btree_node() = default;
btree_node(btree_node const &) = delete;
btree_node &operator=(btree_node const &) = delete;
// Public for EmptyNodeType.
constexpr static size_type Alignment() {
static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
"Alignment of all nodes must be equal.");
return InternalLayout().Alignment();
}
protected:
btree_node() = default;
private:
using layout_type =
absl::container_internal::Layout<btree_node *, uint32_t, field_type,
slot_type, btree_node *>;
constexpr static size_type SizeWithNSlots(size_type n) {
return layout_type(
/*parent*/ 1,
/*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
/*position, start, finish, max_count*/ 4,
/*slots*/ n,
/*children*/ 0)
.AllocSize();
}
// A lower bound for the overhead of fields other than slots in a leaf node.
constexpr static size_type MinimumOverhead() {
return SizeWithNSlots(1) - sizeof(slot_type);
}
// Compute how many values we can fit onto a leaf node taking into account
// padding.
constexpr static size_type NodeTargetSlots(const size_type begin,
const size_type end) {
return begin == end ? begin
: SizeWithNSlots((begin + end) / 2 + 1) >
params_type::kTargetNodeSize
? NodeTargetSlots(begin, (begin + end) / 2)
: NodeTargetSlots((begin + end) / 2 + 1, end);
}
constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize;
constexpr static size_type kNodeTargetSlots =
NodeTargetSlots(0, kTargetNodeSize);
// We need a minimum of 3 slots per internal node in order to perform
// splitting (1 value for the two nodes involved in the split and 1 value
// propagated to the parent as the delimiter for the split). For performance
// reasons, we don't allow 3 slots-per-node due to bad worst case occupancy of
// 1/3 (for a node, not a b-tree).
constexpr static size_type kMinNodeSlots = 4;
constexpr static size_type kNodeSlots =
kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots;
// The node is internal (i.e. is not a leaf node) if and only if `max_count`
// has this value.
constexpr static field_type kInternalNodeMaxCount = 0;
constexpr static layout_type Layout(const size_type slot_count,
const size_type child_count) {
return layout_type(
/*parent*/ 1,
/*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
/*position, start, finish, max_count*/ 4,
/*slots*/ slot_count,
/*children*/ child_count);
}
// Leaves can have less than kNodeSlots values.
constexpr static layout_type LeafLayout(
const size_type slot_count = kNodeSlots) {
return Layout(slot_count, 0);
}
constexpr static layout_type InternalLayout() {
return Layout(kNodeSlots, kNodeSlots + 1);
}
constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) {
return LeafLayout(slot_count).AllocSize();
}
constexpr static size_type InternalSize() {
return InternalLayout().AllocSize();
}
// N is the index of the type in the Layout definition.
// ElementType<N> is the Nth type in the Layout definition.
template <size_type N>
inline typename layout_type::template ElementType<N> *GetField() {
// We assert that we don't read from values that aren't there.
assert(N < 4 || is_internal());
return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
}
template <size_type N>
inline const typename layout_type::template ElementType<N> *GetField() const {
assert(N < 4 || is_internal());
return InternalLayout().template Pointer<N>(
reinterpret_cast<const char *>(this));
}
void set_parent(btree_node *p) { *GetField<0>() = p; }
field_type &mutable_finish() { return GetField<2>()[2]; }
slot_type *slot(size_type i) { return &GetField<3>()[i]; }
slot_type *start_slot() { return slot(start()); }
slot_type *finish_slot() { return slot(finish()); }
const slot_type *slot(size_type i) const { return &GetField<3>()[i]; }
void set_position(field_type v) { GetField<2>()[0] = v; }
void set_start(field_type v) { GetField<2>()[1] = v; }
void set_finish(field_type v) { GetField<2>()[2] = v; }
// This method is only called by the node init methods.
void set_max_count(field_type v) { GetField<2>()[3] = v; }
public:
// Whether this is a leaf node or not. This value doesn't change after the
// node is created.
bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; }
// Whether this is an internal node or not. This value doesn't change after
// the node is created.
bool is_internal() const { return !is_leaf(); }
// Getter for the position of this node in its parent.
field_type position() const { return GetField<2>()[0]; }
// Getter for the offset of the first value in the `values` array.
field_type start() const {
// TODO(ezb): when floating storage is implemented, return GetField<2>()[1];
assert(GetField<2>()[1] == 0);
return 0;
}
// Getter for the offset after the last value in the `values` array.
field_type finish() const { return GetField<2>()[2]; }
// Getters for the number of values stored in this node.
field_type count() const {
assert(finish() >= start());
return finish() - start();
}
field_type max_count() const {
// Internal nodes have max_count==kInternalNodeMaxCount.
// Leaf nodes have max_count in [1, kNodeSlots].
const field_type max_count = GetField<2>()[3];
return max_count == field_type{kInternalNodeMaxCount}
? field_type{kNodeSlots}
: max_count;
}
// Getter for the parent of this node.
btree_node *parent() const { return *GetField<0>(); }
// Getter for whether the node is the root of the tree. The parent of the
// root of the tree is the leftmost node in the tree which is guaranteed to
// be a leaf.
bool is_root() const { return parent()->is_leaf(); }
void make_root() {
assert(parent()->is_root());
set_generation(parent()->generation());
set_parent(parent()->parent());
}
// Gets the root node's generation integer, which is the one used by the tree.
uint32_t *get_root_generation() const {
assert(BtreeGenerationsEnabled());
const btree_node *curr = this;
for (; !curr->is_root(); curr = curr->parent()) continue;
return const_cast<uint32_t *>(&curr->GetField<1>()[0]);
}
// Returns the generation for iterator validation.
uint32_t generation() const {
return BtreeGenerationsEnabled() ? *get_root_generation() : 0;
}
// Updates generation. Should only be called on a root node or during node
// initialization.
void set_generation(uint32_t generation) {
if (BtreeGenerationsEnabled()) GetField<1>()[0] = generation;
}
// Updates the generation. We do this whenever the node is mutated.
void next_generation() {
if (BtreeGenerationsEnabled()) ++*get_root_generation();
}
// Getters for the key/value at position i in the node.
const key_type &key(size_type i) const { return params_type::key(slot(i)); }
reference value(size_type i) { return params_type::element(slot(i)); }
const_reference value(size_type i) const {
return params_type::element(slot(i));
}
// Getters/setter for the child at position i in the node.
btree_node *child(field_type i) const { return GetField<4>()[i]; }
btree_node *start_child() const { return child(start()); }
btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; }
void clear_child(field_type i) {
absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
}
void set_child_noupdate_position(field_type i, btree_node *c) {
absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
mutable_child(i) = c;
}
void set_child(field_type i, btree_node *c) {
set_child_noupdate_position(i, c);
c->set_position(i);
}
void init_child(field_type i, btree_node *c) {
set_child(i, c);
c->set_parent(this);
}
// Returns the position of the first value whose key is not less than k.
template <typename K>
SearchResult<size_type, is_key_compare_to::value> lower_bound(
const K &k, const key_compare &comp) const {
return use_linear_search::value ? linear_search(k, comp)
: binary_search(k, comp);
}
// Returns the position of the first value whose key is greater than k.
template <typename K>
size_type upper_bound(const K &k, const key_compare &comp) const {
auto upper_compare = upper_bound_adapter<key_compare>(comp);
return use_linear_search::value ? linear_search(k, upper_compare).value
: binary_search(k, upper_compare).value;
}
template <typename K, typename Compare>
SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
linear_search(const K &k, const Compare &comp) const {
return linear_search_impl(k, start(), finish(), comp,
btree_is_key_compare_to<Compare, key_type>());
}
template <typename K, typename Compare>
SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
binary_search(const K &k, const Compare &comp) const {
return binary_search_impl(k, start(), finish(), comp,
btree_is_key_compare_to<Compare, key_type>());
}
// Returns the position of the first value whose key is not less than k using
// linear search performed using plain compare.
template <typename K, typename Compare>
SearchResult<size_type, false> linear_search_impl(
const K &k, size_type s, const size_type e, const Compare &comp,
std::false_type /* IsCompareTo */) const {
while (s < e) {
if (!comp(key(s), k)) {
break;
}
++s;
}
return SearchResult<size_type, false>{s};
}
// Returns the position of the first value whose key is not less than k using
// linear search performed using compare-to.
template <typename K, typename Compare>
SearchResult<size_type, true> linear_search_impl(
const K &k, size_type s, const size_type e, const Compare &comp,
std::true_type /* IsCompareTo */) const {
while (s < e) {
const absl::weak_ordering c = comp(key(s), k);
if (c == 0) {
return {s, MatchKind::kEq};
} else if (c > 0) {
break;
}
++s;
}
return {s, MatchKind::kNe};
}
// Returns the position of the first value whose key is not less than k using
// binary search performed using plain compare.
template <typename K, typename Compare>
SearchResult<size_type, false> binary_search_impl(
const K &k, size_type s, size_type e, const Compare &comp,
std::false_type /* IsCompareTo */) const {
while (s != e) {
const size_type mid = (s + e) >> 1;
if (comp(key(mid), k)) {
s = mid + 1;
} else {
e = mid;
}
}
return SearchResult<size_type, false>{s};
}
// Returns the position of the first value whose key is not less than k using
// binary search performed using compare-to.
template <typename K, typename CompareTo>
SearchResult<size_type, true> binary_search_impl(
const K &k, size_type s, size_type e, const CompareTo &comp,
std::true_type /* IsCompareTo */) const {
if (params_type::template can_have_multiple_equivalent_keys<K>()) {
MatchKind exact_match = MatchKind::kNe;
while (s != e) {
const size_type mid = (s + e) >> 1;
const absl::weak_ordering c = comp(key(mid), k);
if (c < 0) {
s = mid + 1;
} else {
e = mid;
if (c == 0) {
// Need to return the first value whose key is not less than k,
// which requires continuing the binary search if there could be
// multiple equivalent keys.
exact_match = MatchKind::kEq;
}
}
}
return {s, exact_match};
} else { // Can't have multiple equivalent keys.
while (s != e) {
const size_type mid = (s + e) >> 1;
const absl::weak_ordering c = comp(key(mid), k);
if (c < 0) {
s = mid + 1;
} else if (c > 0) {
e = mid;
} else {
return {mid, MatchKind::kEq};
}
}
return {s, MatchKind::kNe};
}
}
// Returns whether key i is ordered correctly with respect to the other keys
// in the node. The motivation here is to detect comparators that violate
// transitivity. Note: we only do comparisons of keys on this node rather than
// the whole tree so that this is constant time.
template <typename Compare>
bool is_ordered_correctly(field_type i, const Compare &comp) const {
if (std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase,
Compare>::value ||
params_type::kIsKeyCompareStringAdapted) {
return true;
}
const auto compare = [&](field_type a, field_type b) {
const absl::weak_ordering cmp =
compare_internal::do_three_way_comparison(comp, key(a), key(b));
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
};
int cmp = -1;
constexpr bool kCanHaveEquivKeys =
params_type::template can_have_multiple_equivalent_keys<key_type>();
for (field_type j = start(); j < finish(); ++j) {
if (j == i) {
if (cmp > 0) return false;
continue;
}
int new_cmp = compare(j, i);
if (new_cmp < cmp || (!kCanHaveEquivKeys && new_cmp == 0)) return false;
cmp = new_cmp;
}
return true;
}
// Emplaces a value at position i, shifting all existing values and
// children at positions >= i to the right by 1.
template <typename... Args>
void emplace_value(field_type i, allocator_type *alloc, Args &&...args);
// Removes the values at positions [i, i + to_erase), shifting all existing
// values and children after that range to the left by to_erase. Clears all
// children between [i, i + to_erase).
void remove_values(field_type i, field_type to_erase, allocator_type *alloc);
// Rebalances a node with its right sibling.
void rebalance_right_to_left(field_type to_move, btree_node *right,
allocator_type *alloc);
void rebalance_left_to_right(field_type to_move, btree_node *right,
allocator_type *alloc);
// Splits a node, moving a portion of the node's values to its right sibling.
void split(int insert_position, btree_node *dest, allocator_type *alloc);
// Merges a node with its right sibling, moving all of the values and the
// delimiting key in the parent node onto itself, and deleting the src node.
void merge(btree_node *src, allocator_type *alloc);
// Node allocation/deletion routines.
void init_leaf(field_type position, field_type max_count,
btree_node *parent) {
set_generation(0);
set_parent(parent);
set_position(position);
set_start(0);
set_finish(0);
set_max_count(max_count);
absl::container_internal::SanitizerPoisonMemoryRegion(
start_slot(), max_count * sizeof(slot_type));
}
void init_internal(field_type position, btree_node *parent) {
init_leaf(position, kNodeSlots, parent);
// Set `max_count` to a sentinel value to indicate that this node is
// internal.
set_max_count(kInternalNodeMaxCount);
absl::container_internal::SanitizerPoisonMemoryRegion(
&mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *));
}
static void deallocate(const size_type size, btree_node *node,
allocator_type *alloc) {
absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size);
absl::container_internal::Deallocate<Alignment()>(alloc, node, size);
}
// Deletes a node and all of its children.
static void clear_and_delete(btree_node *node, allocator_type *alloc);
private:
template <typename... Args>
void value_init(const field_type i, allocator_type *alloc, Args &&...args) {
next_generation();
absl::container_internal::SanitizerUnpoisonObject(slot(i));
params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
}
void value_destroy(const field_type i, allocator_type *alloc) {
next_generation();
params_type::destroy(alloc, slot(i));
absl::container_internal::SanitizerPoisonObject(slot(i));
}
void value_destroy_n(const field_type i, const field_type n,
allocator_type *alloc) {
next_generation();
for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
params_type::destroy(alloc, s);
absl::container_internal::SanitizerPoisonObject(s);
}
}
static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) {
absl::container_internal::SanitizerUnpoisonObject(dest);
params_type::transfer(alloc, dest, src);
absl::container_internal::SanitizerPoisonObject(src);
}
// Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
void transfer(const size_type dest_i, const size_type src_i,
btree_node *src_node, allocator_type *alloc) {
next_generation();
transfer(slot(dest_i), src_node->slot(src_i), alloc);
}
// Transfers `n` values starting at value `src_i` in `src_node` into the
// values starting at value `dest_i` in `this`.
void transfer_n(const size_type n, const size_type dest_i,
const size_type src_i, btree_node *src_node,
allocator_type *alloc) {
next_generation();
for (slot_type *src = src_node->slot(src_i), *end = src + n,
*dest = slot(dest_i);
src != end; ++src, ++dest) {
transfer(dest, src, alloc);
}
}
// Same as above, except that we start at the end and work our way to the
// beginning.
void transfer_n_backward(const size_type n, const size_type dest_i,
const size_type src_i, btree_node *src_node,
allocator_type *alloc) {
next_generation();
for (slot_type *src = src_node->slot(src_i + n), *end = src - n,
*dest = slot(dest_i + n);
src != end; --src, --dest) {
// If we modified the loop index calculations above to avoid the -1s here,
// it would result in UB in the computation of `end` (and possibly `src`
// as well, if n == 0), since slot() is effectively an array index and it
// is UB to compute the address of any out-of-bounds array element except
// for one-past-the-end.
transfer(dest - 1, src - 1, alloc);
}
}
template <typename P>
friend class btree;
template <typename N, typename R, typename P>
friend class btree_iterator;
friend class BtreeNodePeer;
friend struct btree_access;
};
template <typename Node>
bool AreNodesFromSameContainer(const Node *node_a, const Node *node_b) {
// If either node is null, then give up on checking whether they're from the
// same container. (If exactly one is null, then we'll trigger the
// default-constructed assert in Equals.)
if (node_a == nullptr || node_b == nullptr) return true;
while (!node_a->is_root()) node_a = node_a->parent();
while (!node_b->is_root()) node_b = node_b->parent();
return node_a == node_b;
}
class btree_iterator_generation_info_enabled {
public:
explicit btree_iterator_generation_info_enabled(uint32_t g)
: generation_(g) {}
// Updates the generation. For use internally right before we return an
// iterator to the user.
template <typename Node>
void update_generation(const Node *node) {
if (node != nullptr) generation_ = node->generation();
}
uint32_t generation() const { return generation_; }
template <typename Node>
void assert_valid_generation(const Node *node) const {
if (node != nullptr && node->generation() != generation_) {
ABSL_INTERNAL_LOG(
FATAL,
"Attempting to use an invalidated iterator. The corresponding b-tree "
"container has been mutated since this iterator was constructed.");
}
}
private:
// Used to check that the iterator hasn't been invalidated.
uint32_t generation_;
};
class btree_iterator_generation_info_disabled {
public:
explicit btree_iterator_generation_info_disabled(uint32_t) {}
static void update_generation(const void *) {}
static uint32_t generation() { return 0; }
static void assert_valid_generation(const void *) {}
};
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
using btree_iterator_generation_info = btree_iterator_generation_info_enabled;
#else
using btree_iterator_generation_info = btree_iterator_generation_info_disabled;
#endif
template <typename Node, typename Reference, typename Pointer>
class btree_iterator : private btree_iterator_generation_info {
using field_type = typename Node::field_type;
using key_type = typename Node::key_type;
using size_type = typename Node::size_type;
using params_type = typename Node::params_type;
using is_map_container = typename params_type::is_map_container;
using node_type = Node;
using normal_node = typename std::remove_const<Node>::type;
using const_node = const Node;
using normal_pointer = typename params_type::pointer;
using normal_reference = typename params_type::reference;
using const_pointer = typename params_type::const_pointer;
using const_reference = typename params_type::const_reference;
using slot_type = typename params_type::slot_type;
// In sets, all iterators are const.
using iterator = absl::conditional_t<
is_map_container::value,
btree_iterator<normal_node, normal_reference, normal_pointer>,
btree_iterator<normal_node, const_reference, const_pointer>>;
using const_iterator =
btree_iterator<const_node, const_reference, const_pointer>;
public:
// These aliases are public for std::iterator_traits.
using difference_type = typename Node::difference_type;
using value_type = typename params_type::value_type;
using pointer = Pointer;
using reference = Reference;
using iterator_category = std::bidirectional_iterator_tag;
btree_iterator() : btree_iterator(nullptr, -1) {}
explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {}
btree_iterator(Node *n, int p)
: btree_iterator_generation_info(n != nullptr ? n->generation()
: ~uint32_t{}),
node_(n),
position_(p) {}
// NOTE: this SFINAE allows for implicit conversions from iterator to
// const_iterator, but it specifically avoids hiding the copy constructor so
// that the trivial one will be used when possible.
template <typename N, typename R, typename P,
absl::enable_if_t<
std::is_same<btree_iterator<N, R, P>, iterator>::value &&
std::is_same<btree_iterator, const_iterator>::value,
int> = 0>
btree_iterator(const btree_iterator<N, R, P> other) // NOLINT
: btree_iterator_generation_info(other),
node_(other.node_),
position_(other.position_) {}
bool operator==(const iterator &other) const {
return Equals(other);
}
bool operator==(const const_iterator &other) const {
return Equals(other);
}
bool operator!=(const iterator &other) const {
return !Equals(other);
}
bool operator!=(const const_iterator &other) const {
return !Equals(other);
}
// Returns n such that n calls to ++other yields *this.
// Precondition: n exists.
difference_type operator-(const_iterator other) const {
if (node_ == other.node_) {
if (node_->is_leaf()) return position_ - other.position_;
if (position_ == other.position_) return 0;
}
return distance_slow(other);
}
// Accessors for the key/value the iterator is pointing at.
reference operator*() const {
ABSL_HARDENING_ASSERT(node_ != nullptr);
assert_valid_generation(node_);
ABSL_HARDENING_ASSERT(position_ >= node_->start());
if (position_ >= node_->finish()) {
ABSL_HARDENING_ASSERT(!IsEndIterator() && "Dereferencing end() iterator");
ABSL_HARDENING_ASSERT(position_ < node_->finish());
}
return node_->value(static_cast<field_type>(position_));
}
pointer operator->() const { return &operator*(); }
btree_iterator &operator++() {
increment();
return *this;
}
btree_iterator &operator--() {
decrement();
return *this;
}
btree_iterator operator++(int) {
btree_iterator tmp = *this;
++*this;
return tmp;
}
btree_iterator operator--(int) {
btree_iterator tmp = *this;
--*this;
return tmp;
}
private:
friend iterator;
friend const_iterator;
template <typename Params>
friend class btree;
template <typename Tree>
friend class btree_container;
template <typename Tree>
friend class btree_set_container;
template <typename Tree>
friend class btree_map_container;
template <typename Tree>
friend class btree_multiset_container;
template <typename TreeType, typename CheckerType>
friend class base_checker;
friend struct btree_access;
// This SFINAE allows explicit conversions from const_iterator to
// iterator, but also avoids hiding the copy constructor.
// NOTE: the const_cast is safe because this constructor is only called by
// non-const methods and the container owns the nodes.
template <typename N, typename R, typename P,
absl::enable_if_t<
std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
std::is_same<btree_iterator, iterator>::value,
int> = 0>
explicit btree_iterator(const btree_iterator<N, R, P> other)
: btree_iterator_generation_info(other.generation()),
node_(const_cast<node_type *>(other.node_)),
position_(other.position_) {}
bool Equals(const const_iterator other) const {
ABSL_HARDENING_ASSERT(((node_ == nullptr && other.node_ == nullptr) ||
(node_ != nullptr && other.node_ != nullptr)) &&
"Comparing default-constructed iterator with "
"non-default-constructed iterator.");
// Note: we use assert instead of ABSL_HARDENING_ASSERT here because this
// changes the complexity of Equals from O(1) to O(log(N) + log(M)) where
// N/M are sizes of the containers containing node_/other.node_.
assert(AreNodesFromSameContainer(node_, other.node_) &&
"Comparing iterators from different containers.");
assert_valid_generation(node_);
other.assert_valid_generation(other.node_);
return node_ == other.node_ && position_ == other.position_;
}
bool IsEndIterator() const {
if (position_ != node_->finish()) return false;
node_type *node = node_;
while (!node->is_root()) {
if (node->position() != node->parent()->finish()) return false;
node = node->parent();
}
return true;
}
// Returns n such that n calls to ++other yields *this.
// Precondition: n exists && (this->node_ != other.node_ ||
// !this->node_->is_leaf() || this->position_ != other.position_).
difference_type distance_slow(const_iterator other) const;
// Increment/decrement the iterator.
void increment() {
assert_valid_generation(node_);
if (node_->is_leaf() && ++position_ < node_->finish()) {
return;
}
increment_slow();
}
void increment_slow();
void decrement() {
assert_valid_generation(node_);
if (node_->is_leaf() && --position_ >= node_->start()) {
return;
}
decrement_slow();
}
void decrement_slow();
const key_type &key() const {
return node_->key(static_cast<size_type>(position_));
}
decltype(std::declval<Node *>()->slot(0)) slot() {
return node_->slot(static_cast<size_type>(position_));
}
void update_generation() {
btree_iterator_generation_info::update_generation(node_);
}
// The node in the tree the iterator is pointing at.
Node *node_;
// The position within the node of the tree the iterator is pointing at.
// NOTE: this is an int rather than a field_type because iterators can point
// to invalid positions (such as -1) in certain circumstances.
int position_;
};
template <typename Params>
class btree {
using node_type = btree_node<Params>;
using is_key_compare_to = typename Params::is_key_compare_to;
using field_type = typename node_type::field_type;
// We use a static empty node for the root/leftmost/rightmost of empty btrees
// in order to avoid branching in begin()/end().
struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
using field_type = typename node_type::field_type;
node_type *parent;
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
uint32_t generation = 0;
#endif
field_type position = 0;
field_type start = 0;
field_type finish = 0;
// max_count must be != kInternalNodeMaxCount (so that this node is regarded
// as a leaf node). max_count() is never called when the tree is empty.
field_type max_count = node_type::kInternalNodeMaxCount + 1;
#ifdef _MSC_VER
// MSVC has constexpr code generations bugs here.
EmptyNodeType() : parent(this) {}
#else
explicit constexpr EmptyNodeType(node_type *p) : parent(p) {}
#endif
};
static node_type *EmptyNode() {
#ifdef _MSC_VER
static EmptyNodeType *empty_node = new EmptyNodeType;
// This assert fails on some other construction methods.
assert(empty_node->parent == empty_node);
return empty_node;
#else
static constexpr EmptyNodeType empty_node(
const_cast<EmptyNodeType *>(&empty_node));
return const_cast<EmptyNodeType *>(&empty_node);
#endif
}
enum : uint32_t {
kNodeSlots = node_type::kNodeSlots,
kMinNodeValues = kNodeSlots / 2,
};
struct node_stats {
using size_type = typename Params::size_type;
node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
node_stats &operator+=(const node_stats &other) {
leaf_nodes += other.leaf_nodes;
internal_nodes += other.internal_nodes;
return *this;
}
size_type leaf_nodes;
size_type internal_nodes;
};
public:
using key_type = typename Params::key_type;
using value_type = typename Params::value_type;
using size_type = typename Params::size_type;
using difference_type = typename Params::difference_type;
using key_compare = typename Params::key_compare;
using original_key_compare = typename Params::original_key_compare;
using value_compare = typename Params::value_compare;
using allocator_type = typename Params::allocator_type;
using reference = typename Params::reference;
using const_reference = typename Params::const_reference;
using pointer = typename Params::pointer;
using const_pointer = typename Params::const_pointer;
using iterator =
typename btree_iterator<node_type, reference, pointer>::iterator;
using const_iterator = typename iterator::const_iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_handle_type = node_handle<Params, Params, allocator_type>;
// Internal types made public for use by btree_container types.
using params_type = Params;
using slot_type = typename Params::slot_type;
private:
// Copies or moves (depending on the template parameter) the values in
// other into this btree in their order in other. This btree must be empty
// before this method is called. This method is used in copy construction,
// copy assignment, and move assignment.
template <typename Btree>
void copy_or_move_values_in_order(Btree &other);
// Validates that various assumptions/requirements are true at compile time.
constexpr static bool static_assert_validation();
public:
btree(const key_compare &comp, const allocator_type &alloc)
: root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {}
btree(const btree &other) : btree(other, other.allocator()) {}
btree(const btree &other, const allocator_type &alloc)
: btree(other.key_comp(), alloc) {
copy_or_move_values_in_order(other);
}
btree(btree &&other) noexcept
: root_(absl::exchange(other.root_, EmptyNode())),
rightmost_(std::move(other.rightmost_)),
size_(absl::exchange(other.size_, 0u)) {
other.mutable_rightmost() = EmptyNode();
}
btree(btree &&other, const allocator_type &alloc)
: btree(other.key_comp(), alloc) {
if (alloc == other.allocator()) {
swap(other);
} else {
// Move values from `other` one at a time when allocators are different.
copy_or_move_values_in_order(other);
}
}
~btree() {
// Put static_asserts in destructor to avoid triggering them before the type
// is complete.
static_assert(static_assert_validation(), "This call must be elided.");
clear();
}
// Assign the contents of other to *this.
btree &operator=(const btree &other);
btree &operator=(btree &&other) noexcept;
iterator begin() { return iterator(leftmost()); }
const_iterator begin() const { return const_iterator(leftmost()); }
iterator end() { return iterator(rightmost(), rightmost()->finish()); }
const_iterator end() const {
return const_iterator(rightmost(), rightmost()->finish());
}
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Finds the first element whose key is not less than `key`.
template <typename K>
iterator lower_bound(const K &key) {
return internal_end(internal_lower_bound(key).value);
}
template <typename K>
const_iterator lower_bound(const K &key) const {
return internal_end(internal_lower_bound(key).value);
}
// Finds the first element whose key is not less than `key` and also returns
// whether that element is equal to `key`.
template <typename K>
std::pair<iterator, bool> lower_bound_equal(const K &key) const;
// Finds the first element whose key is greater than `key`.
template <typename K>
iterator upper_bound(const K &key) {
return internal_end(internal_upper_bound(key));
}
template <typename K>
const_iterator upper_bound(const K &key) const {
return internal_end(internal_upper_bound(key));
}
// Finds the range of values which compare equal to key. The first member of
// the returned pair is equal to lower_bound(key). The second member of the
// pair is equal to upper_bound(key).
template <typename K>
std::pair<iterator, iterator> equal_range(const K &key);
template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
return const_cast<btree *>(this)->equal_range(key);
}
// Inserts a value into the btree only if it does not already exist. The
// boolean return value indicates whether insertion succeeded or failed.
// Requirement: if `key` already exists in the btree, does not consume `args`.
// Requirement: `key` is never referenced after consuming `args`.
template <typename K, typename... Args>
std::pair<iterator, bool> insert_unique(const K &key, Args &&...args);
// Inserts with hint. Checks to see if the value should be placed immediately
// before `position` in the tree. If so, then the insertion will take
// amortized constant time. If not, the insertion will take amortized
// logarithmic time as if a call to insert_unique() were made.
// Requirement: if `key` already exists in the btree, does not consume `args`.
// Requirement: `key` is never referenced after consuming `args`.
template <typename K, typename... Args>
std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key,
Args &&...args);
// Insert a range of values into the btree.
// Note: the first overload avoids constructing a value_type if the key
// already exists in the btree.
template <typename InputIterator,
typename = decltype(std::declval<const key_compare &>()(
params_type::key(*std::declval<InputIterator>()),
std::declval<const key_type &>()))>
void insert_iterator_unique(InputIterator b, InputIterator e, int);
// We need the second overload for cases in which we need to construct a
// value_type in order to compare it with the keys already in the btree.
template <typename InputIterator>
void insert_iterator_unique(InputIterator b, InputIterator e, char);
// Inserts a value into the btree.
template <typename ValueType>
iterator insert_multi(const key_type &key, ValueType &&v);
// Inserts a value into the btree.
template <typename ValueType>
iterator insert_multi(ValueType &&v) {
return insert_multi(params_type::key(v), std::forward<ValueType>(v));
}
// Insert with hint. Check to see if the value should be placed immediately
// before position in the tree. If it does, then the insertion will take
// amortized constant time. If not, the insertion will take amortized
// logarithmic time as if a call to insert_multi(v) were made.
template <typename ValueType>
iterator insert_hint_multi(iterator position, ValueType &&v);
// Insert a range of values into the btree.
template <typename InputIterator>
void insert_iterator_multi(InputIterator b,
InputIterator e);
// Erase the specified iterator from the btree. The iterator must be valid
// (i.e. not equal to end()). Return an iterator pointing to the node after
// the one that was erased (or end() if none exists).
// Requirement: does not read the value at `*iter`.
iterator erase(iterator iter);
// Erases range. Returns the number of keys erased and an iterator pointing
// to the element after the last erased element.
std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
// Finds an element with key equivalent to `key` or returns `end()` if `key`
// is not present.
template <typename K>
iterator find(const K &key) {
return internal_end(internal_find(key));
}
template <typename K>
const_iterator find(const K &key) const {
return internal_end(internal_find(key));
}
// Clear the btree, deleting all of the values it contains.
void clear();
// Swaps the contents of `this` and `other`.
void swap(btree &other);
const key_compare &key_comp() const noexcept {
return rightmost_.template get<0>();
}
template <typename K1, typename K2>
bool compare_keys(const K1 &a, const K2 &b) const {
return compare_internal::compare_result_as_less_than(key_comp()(a, b));
}
value_compare value_comp() const {
return value_compare(original_key_compare(key_comp()));
}
// Verifies the structure of the btree.
void verify() const;
// Size routines.
size_type size() const { return size_; }
size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
bool empty() const { return size_ == 0; }
// The height of the btree. An empty tree will have height 0.
size_type height() const {
size_type h = 0;
if (!empty()) {
// Count the length of the chain from the leftmost node up to the
// root. We actually count from the root back around to the level below
// the root, but the calculation is the same because of the circularity
// of that traversal.
const node_type *n = root();
do {
++h;
n = n->parent();
} while (n != root());
}
return h;
}
// The number of internal, leaf and total nodes used by the btree.
size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
size_type internal_nodes() const {
return internal_stats(root()).internal_nodes;
}
size_type nodes() const {
node_stats stats = internal_stats(root());
return stats.leaf_nodes + stats.internal_nodes;
}
// The total number of bytes used by the btree.
// TODO(b/169338300): update to support node_btree_*.
size_type bytes_used() const {
node_stats stats = internal_stats(root());
if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
return sizeof(*this) + node_type::LeafSize(root()->max_count());
} else {
return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
stats.internal_nodes * node_type::InternalSize();
}
}
// The average number of bytes used per value stored in the btree assuming
// random insertion order.
static double average_bytes_per_value() {
// The expected number of values per node with random insertion order is the
// average of the maximum and minimum numbers of values per node.
const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0;
return node_type::LeafSize() / expected_values_per_node;
}
// The fullness of the btree. Computed as the number of elements in the btree
// divided by the maximum number of elements a tree with the current number
// of nodes could hold. A value of 1 indicates perfect space
// utilization. Smaller values indicate space wastage.
// Returns 0 for empty trees.
double fullness() const {
if (empty()) return 0.0;
return static_cast<double>(size()) / (nodes() * kNodeSlots);
}
// The overhead of the btree structure in bytes per node. Computed as the
// total number of bytes used by the btree minus the number of bytes used for
// storing elements divided by the number of elements.
// Returns 0 for empty trees.
double overhead() const {
if (empty()) return 0.0;
return (bytes_used() - size() * sizeof(value_type)) /
static_cast<double>(size());
}
// The allocator used by the btree.
allocator_type get_allocator() const { return allocator(); }
private:
friend struct btree_access;
// Internal accessor routines.
node_type *root() { return root_; }
const node_type *root() const { return root_; }
node_type *&mutable_root() noexcept { return root_; }
node_type *rightmost() { return rightmost_.template get<2>(); }
const node_type *rightmost() const { return rightmost_.template get<2>(); }
node_type *&mutable_rightmost() noexcept {
return rightmost_.template get<2>();
}
key_compare *mutable_key_comp() noexcept {
return &rightmost_.template get<0>();
}
// The leftmost node is stored as the parent of the root node.
node_type *leftmost() { return root()->parent(); }
const node_type *leftmost() const { return root()->parent(); }
// Allocator routines.
allocator_type *mutable_allocator() noexcept {
return &rightmost_.template get<1>();
}
const allocator_type &allocator() const noexcept {
return rightmost_.template get<1>();
}
// Allocates a correctly aligned node of at least size bytes using the
// allocator.
node_type *allocate(size_type size) {
return reinterpret_cast<node_type *>(
absl::container_internal::Allocate<node_type::Alignment()>(
mutable_allocator(), size));
}
// Node creation/deletion routines.
node_type *new_internal_node(field_type position, node_type *parent) {
node_type *n = allocate(node_type::InternalSize());
n->init_internal(position, parent);
return n;
}
node_type *new_leaf_node(field_type position, node_type *parent) {
node_type *n = allocate(node_type::LeafSize());
n->init_leaf(position, kNodeSlots, parent);
return n;
}
node_type *new_leaf_root_node(field_type max_count) {
node_type *n = allocate(node_type::LeafSize(max_count));
n->init_leaf(/*position=*/0, max_count, /*parent=*/n);
return n;
}
// Deletion helper routines.
iterator rebalance_after_delete(iterator iter);
// Rebalances or splits the node iter points to.
void rebalance_or_split(iterator *iter);
// Merges the values of left, right and the delimiting key on their parent
// onto left, removing the delimiting key and deleting right.
void merge_nodes(node_type *left, node_type *right);
// Tries to merge node with its left or right sibling, and failing that,
// rebalance with its left or right sibling. Returns true if a merge
// occurred, at which point it is no longer valid to access node. Returns
// false if no merging took place.
bool try_merge_or_rebalance(iterator *iter);
// Tries to shrink the height of the tree by 1.
void try_shrink();
iterator internal_end(iterator iter) {
return iter.node_ != nullptr ? iter : end();
}
const_iterator internal_end(const_iterator iter) const {
return iter.node_ != nullptr ? iter : end();
}
// Emplaces a value into the btree immediately before iter. Requires that
// key(v) <= iter.key() and (--iter).key() <= key(v).
template <typename... Args>
iterator internal_emplace(iterator iter, Args &&...args);
// Returns an iterator pointing to the first value >= the value "iter" is
// pointing at. Note that "iter" might be pointing to an invalid location such
// as iter.position_ == iter.node_->finish(). This routine simply moves iter
// up in the tree to a valid location. Requires: iter.node_ is non-null.
template <typename IterType>
static IterType internal_last(IterType iter);
// Returns an iterator pointing to the leaf position at which key would
// reside in the tree, unless there is an exact match - in which case, the
// result may not be on a leaf. When there's a three-way comparator, we can
// return whether there was an exact match. This allows the caller to avoid a
// subsequent comparison to determine if an exact match was made, which is
// important for keys with expensive comparison, such as strings.
template <typename K>
SearchResult<iterator, is_key_compare_to::value> internal_locate(
const K &key) const;
// Internal routine which implements lower_bound().
template <typename K>
SearchResult<iterator, is_key_compare_to::value> internal_lower_bound(
const K &key) const;
// Internal routine which implements upper_bound().
template <typename K>
iterator internal_upper_bound(const K &key) const;
// Internal routine which implements find().
template <typename K>
iterator internal_find(const K &key) const;
// Verifies the tree structure of node.
size_type internal_verify(const node_type *node, const key_type *lo,
const key_type *hi) const;
node_stats internal_stats(const node_type *node) const {
// The root can be a static empty node.
if (node == nullptr || (node == root() && empty())) {
return node_stats(0, 0);
}
if (node->is_leaf()) {
return node_stats(1, 0);
}
node_stats res(0, 1);
for (int i = node->start(); i <= node->finish(); ++i) {
res += internal_stats(node->child(i));
}
return res;
}
node_type *root_;
// A pointer to the rightmost node. Note that the leftmost node is stored as
// the root's parent. We use compressed tuple in order to save space because
// key_compare and allocator_type are usually empty.
absl::container_internal::CompressedTuple<key_compare, allocator_type,
node_type *>
rightmost_;
// Number of values.
size_type size_;
};
////
// btree_node methods
template <typename P>
template <typename... Args>
inline void btree_node<P>::emplace_value(const field_type i,
allocator_type *alloc,
Args &&...args) {
assert(i >= start());
assert(i <= finish());
// Shift old values to create space for new value and then construct it in
// place.
if (i < finish()) {
transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
alloc);
}
value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...);
set_finish(finish() + 1);
if (is_internal() && finish() > i + 1) {
for (field_type j = finish(); j > i + 1; --j) {
set_child(j, child(j - 1));
}
clear_child(i + 1);
}
}
template <typename P>
inline void btree_node<P>::remove_values(const field_type i,
const field_type to_erase,
allocator_type *alloc) {
// Transfer values after the removed range into their new places.
value_destroy_n(i, to_erase, alloc);
const field_type orig_finish = finish();
const field_type src_i = i + to_erase;
transfer_n(orig_finish - src_i, i, src_i, this, alloc);
if (is_internal()) {
// Delete all children between begin and end.
for (field_type j = 0; j < to_erase; ++j) {
clear_and_delete(child(i + j + 1), alloc);
}
// Rotate children after end into new positions.
for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) {
set_child(j - to_erase, child(j));
clear_child(j);
}
}
set_finish(orig_finish - to_erase);
}
template <typename P>
void btree_node<P>::rebalance_right_to_left(field_type to_move,
btree_node *right,
allocator_type *alloc) {
assert(parent() == right->parent());
assert(position() + 1 == right->position());
assert(right->count() >= count());
assert(to_move >= 1);
assert(to_move <= right->count());
// 1) Move the delimiting value in the parent to the left node.
transfer(finish(), position(), parent(), alloc);
// 2) Move the (to_move - 1) values from the right node to the left node.
transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
// 3) Move the new delimiting value to the parent from the right node.
parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
// 4) Shift the values in the right node to their correct positions.
right->transfer_n(right->count() - to_move, right->start(),
right->start() + to_move, right, alloc);
if (is_internal()) {
// Move the child pointers from the right to the left node.
for (field_type i = 0; i < to_move; ++i) {
init_child(finish() + i + 1, right->child(i));
}
for (field_type i = right->start(); i <= right->finish() - to_move; ++i) {
assert(i + to_move <= right->max_count());
right->init_child(i, right->child(i + to_move));
right->clear_child(i + to_move);
}
}
// Fixup `finish` on the left and right nodes.
set_finish(finish() + to_move);
right->set_finish(right->finish() - to_move);
}
template <typename P>
void btree_node<P>::rebalance_left_to_right(field_type to_move,
btree_node *right,
allocator_type *alloc) {
assert(parent() == right->parent());
assert(position() + 1 == right->position());
assert(count() >= right->count());
assert(to_move >= 1);
assert(to_move <= count());
// Values in the right node are shifted to the right to make room for the
// new to_move values. Then, the delimiting value in the parent and the
// other (to_move - 1) values in the left node are moved into the right node.
// Lastly, a new delimiting value is moved from the left node into the
// parent, and the remaining empty left node entries are destroyed.
// 1) Shift existing values in the right node to their correct positions.
right->transfer_n_backward(right->count(), right->start() + to_move,
right->start(), right, alloc);
// 2) Move the delimiting value in the parent to the right node.
right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
// 3) Move the (to_move - 1) values from the left node to the right node.
right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
alloc);
// 4) Move the new delimiting value to the parent from the left node.
parent()->transfer(position(), finish() - to_move, this, alloc);
if (is_internal()) {
// Move the child pointers from the left to the right node.
for (field_type i = right->finish() + 1; i > right->start(); --i) {
right->init_child(i - 1 + to_move, right->child(i - 1));
right->clear_child(i - 1);
}
for (field_type i = 1; i <= to_move; ++i) {
right->init_child(i - 1, child(finish() - to_move + i));
clear_child(finish() - to_move + i);
}
}
// Fixup the counts on the left and right nodes.
set_finish(finish() - to_move);
right->set_finish(right->finish() + to_move);
}
template <typename P>
void btree_node<P>::split(const int insert_position, btree_node *dest,
allocator_type *alloc) {
assert(dest->count() == 0);
assert(max_count() == kNodeSlots);
assert(position() + 1 == dest->position());
assert(parent() == dest->parent());
// We bias the split based on the position being inserted. If we're
// inserting at the beginning of the left node then bias the split to put
// more values on the right node. If we're inserting at the end of the
// right node then bias the split to put more values on the left node.
if (insert_position == start()) {
dest->set_finish(dest->start() + finish() - 1);
} else if (insert_position == kNodeSlots) {
dest->set_finish(dest->start());
} else {
dest->set_finish(dest->start() + count() / 2);
}
set_finish(finish() - dest->count());
assert(count() >= 1);
// Move values from the left sibling to the right sibling.
dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
// The split key is the largest value in the left sibling.
--mutable_finish();
parent()->emplace_value(position(), alloc, finish_slot());
value_destroy(finish(), alloc);
parent()->set_child_noupdate_position(position() + 1, dest);
if (is_internal()) {
for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish();
++i, ++j) {
assert(child(j) != nullptr);
dest->init_child(i, child(j));
clear_child(j);
}
}
}
template <typename P>
void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
assert(parent() == src->parent());
assert(position() + 1 == src->position());
// Move the delimiting value to the left node.
value_init(finish(), alloc, parent()->slot(position()));
// Move the values from the right to the left node.
transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
if (is_internal()) {
// Move the child pointers from the right to the left node.
for (field_type i = src->start(), j = finish() + 1; i <= src->finish();
++i, ++j) {
init_child(j, src->child(i));
src->clear_child(i);
}
}
// Fixup `finish` on the src and dest nodes.
set_finish(start() + 1 + count() + src->count());
src->set_finish(src->start());
// Remove the value on the parent node and delete the src node.
parent()->remove_values(position(), /*to_erase=*/1, alloc);
}
template <typename P>
void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
if (node->is_leaf()) {
node->value_destroy_n(node->start(), node->count(), alloc);
deallocate(LeafSize(node->max_count()), node, alloc);
return;
}
if (node->count() == 0) {
deallocate(InternalSize(), node, alloc);
return;
}
// The parent of the root of the subtree we are deleting.
btree_node *delete_root_parent = node->parent();
// Navigate to the leftmost leaf under node, and then delete upwards.
while (node->is_internal()) node = node->start_child();
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
// When generations are enabled, we delete the leftmost leaf last in case it's
// the parent of the root and we need to check whether it's a leaf before we
// can update the root's generation.
// TODO(ezb): if we change btree_node::is_root to check a bool inside the node
// instead of checking whether the parent is a leaf, we can remove this logic.
btree_node *leftmost_leaf = node;
#endif
// Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
// which isn't guaranteed to be a valid `field_type`.
size_type pos = node->position();
btree_node *parent = node->parent();
for (;;) {
// In each iteration of the next loop, we delete one leaf node and go right.
assert(pos <= parent->finish());
do {
node = parent->child(static_cast<field_type>(pos));
if (node->is_internal()) {
// Navigate to the leftmost leaf under node.
while (node->is_internal()) node = node->start_child();
pos = node->position();
parent = node->parent();
}
node->value_destroy_n(node->start(), node->count(), alloc);
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
if (leftmost_leaf != node)
#endif
deallocate(LeafSize(node->max_count()), node, alloc);
++pos;
} while (pos <= parent->finish());
// Once we've deleted all children of parent, delete parent and go up/right.
assert(pos > parent->finish());
do {
node = parent;
pos = node->position();
parent = node->parent();
node->value_destroy_n(node->start(), node->count(), alloc);
deallocate(InternalSize(), node, alloc);
if (parent == delete_root_parent) {
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc);
#endif
return;
}
++pos;
} while (pos > parent->finish());
}
}
////
// btree_iterator methods
// Note: the implementation here is based on btree_node::clear_and_delete.
template <typename N, typename R, typename P>
auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const
-> difference_type {
const_iterator begin = other;
const_iterator end = *this;
assert(begin.node_ != end.node_ || !begin.node_->is_leaf() ||
begin.position_ != end.position_);
const node_type *node = begin.node_;
// We need to compensate for double counting if begin.node_ is a leaf node.
difference_type count = node->is_leaf() ? -begin.position_ : 0;
// First navigate to the leftmost leaf node past begin.
if (node->is_internal()) {
++count;
node = node->child(begin.position_ + 1);
}
while (node->is_internal()) node = node->start_child();
// Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
// which isn't guaranteed to be a valid `field_type`.
size_type pos = node->position();
const node_type *parent = node->parent();
for (;;) {
// In each iteration of the next loop, we count one leaf node and go right.
assert(pos <= parent->finish());
do {
node = parent->child(static_cast<field_type>(pos));
if (node->is_internal()) {
// Navigate to the leftmost leaf under node.
while (node->is_internal()) node = node->start_child();
pos = node->position();
parent = node->parent();
}
if (node == end.node_) return count + end.position_;
if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
return count + node->count();
// +1 is for the next internal node value.
count += node->count() + 1;
++pos;
} while (pos <= parent->finish());
// Once we've counted all children of parent, go up/right.
assert(pos > parent->finish());
do {
node = parent;
pos = node->position();
parent = node->parent();
// -1 because we counted the value at end and shouldn't.
if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
return count - 1;
++pos;
} while (pos > parent->finish());
}
}
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::increment_slow() {
if (node_->is_leaf()) {
assert(position_ >= node_->finish());
btree_iterator save(*this);
while (position_ == node_->finish() && !node_->is_root()) {
assert(node_->parent()->child(node_->position()) == node_);
position_ = node_->position();
node_ = node_->parent();
}
// TODO(ezb): assert we aren't incrementing end() instead of handling.
if (position_ == node_->finish()) {
*this = save;
}
} else {
assert(position_ < node_->finish());
node_ = node_->child(static_cast<field_type>(position_ + 1));
while (node_->is_internal()) {
node_ = node_->start_child();
}
position_ = node_->start();
}
}
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::decrement_slow() {
if (node_->is_leaf()) {
assert(position_ <= -1);
btree_iterator save(*this);
while (position_ < node_->start() && !node_->is_root()) {
assert(node_->parent()->child(node_->position()) == node_);
position_ = node_->position() - 1;
node_ = node_->parent();
}
// TODO(ezb): assert we aren't decrementing begin() instead of handling.
if (position_ < node_->start()) {
*this = save;
}
} else {
assert(position_ >= node_->start());
node_ = node_->child(static_cast<field_type>(position_));
while (node_->is_internal()) {
node_ = node_->child(node_->finish());
}
position_ = node_->finish() - 1;
}
}
////
// btree methods
template <typename P>
template <typename Btree>
void btree<P>::copy_or_move_values_in_order(Btree &other) {
static_assert(std::is_same<btree, Btree>::value ||
std::is_same<const btree, Btree>::value,
"Btree type must be same or const.");
assert(empty());
// We can avoid key comparisons because we know the order of the
// values is the same order we'll store them in.
auto iter = other.begin();
if (iter == other.end()) return;
insert_multi(iter.slot());
++iter;
for (; iter != other.end(); ++iter) {
// If the btree is not empty, we can just insert the new value at the end
// of the tree.
internal_emplace(end(), iter.slot());
}
}
template <typename P>
constexpr bool btree<P>::static_assert_validation() {
static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
"Key comparison must be nothrow copy constructible");
static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
"Allocator must be nothrow copy constructible");
static_assert(std::is_trivially_copyable<iterator>::value,
"iterator not trivially copyable.");
// Note: We assert that kTargetValues, which is computed from
// Params::kTargetNodeSize, must fit the node_type::field_type.
static_assert(
kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))),
"target node size too large");
// Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
static_assert(
compare_has_valid_result_type<key_compare, key_type>(),
"key comparison function must return absl::{weak,strong}_ordering or "
"bool.");
// Test the assumption made in setting kNodeSlotSpace.
static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
"node space assumption incorrect");
return true;
}
template <typename P>
template <typename K>
auto btree<P>::lower_bound_equal(const K &key) const
-> std::pair<iterator, bool> {
const SearchResult<iterator, is_key_compare_to::value> res =
internal_lower_bound(key);
const iterator lower = iterator(internal_end(res.value));
const bool equal = res.HasMatch()
? res.IsEq()
: lower != end() && !compare_keys(key, lower.key());
return {lower, equal};
}
template <typename P>
template <typename K>
auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key);
const iterator lower = lower_and_equal.first;
if (!lower_and_equal.second) {
return {lower, lower};
}
const iterator next = std::next(lower);
if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
// The next iterator after lower must point to a key greater than `key`.
// Note: if this assert fails, then it may indicate that the comparator does
// not meet the equivalence requirements for Compare
// (see https://en.cppreference.com/w/cpp/named_req/Compare).
assert(next == end() || compare_keys(key, next.key()));
return {lower, next};
}
// Try once more to avoid the call to upper_bound() if there's only one
// equivalent key. This should prevent all calls to upper_bound() in cases of
// unique-containers with heterogeneous comparators in which all comparison
// operators have the same equivalence classes.
if (next == end() || compare_keys(key, next.key())) return {lower, next};
// In this case, we need to call upper_bound() to avoid worst case O(N)
// behavior if we were to iterate over equal keys.
return {lower, upper_bound(key)};
}
template <typename P>
template <typename K, typename... Args>
auto btree<P>::insert_unique(const K &key, Args &&...args)
-> std::pair<iterator, bool> {
if (empty()) {
mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
}
SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
iterator iter = res.value;
if (res.HasMatch()) {
if (res.IsEq()) {
// The key already exists in the tree, do nothing.
return {iter, false};
}
} else {
iterator last = internal_last(iter);
if (last.node_ && !compare_keys(key, last.key())) {
// The key already exists in the tree, do nothing.
return {last, false};
}
}
return {internal_emplace(iter, std::forward<Args>(args)...), true};
}
template <typename P>
template <typename K, typename... Args>
inline auto btree<P>::insert_hint_unique(iterator position, const K &key,
Args &&...args)
-> std::pair<iterator, bool> {
if (!empty()) {
if (position == end() || compare_keys(key, position.key())) {
if (position == begin() || compare_keys(std::prev(position).key(), key)) {
// prev.key() < key < position.key()
return {internal_emplace(position, std::forward<Args>(args)...), true};
}
} else if (compare_keys(position.key(), key)) {
++position;
if (position == end() || compare_keys(key, position.key())) {
// {original `position`}.key() < key < {current `position`}.key()
return {internal_emplace(position, std::forward<Args>(args)...), true};
}
} else {
// position.key() == key
return {position, false};
}
}
return insert_unique(key, std::forward<Args>(args)...);
}
template <typename P>
template <typename InputIterator, typename>
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) {
for (; b != e; ++b) {
insert_hint_unique(end(), params_type::key(*b), *b);
}
}
template <typename P>
template <typename InputIterator>
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
for (; b != e; ++b) {
// Use a node handle to manage a temp slot.
auto node_handle =
CommonAccess::Construct<node_handle_type>(get_allocator(), *b);
slot_type *slot = CommonAccess::GetSlot(node_handle);
insert_hint_unique(end(), params_type::key(slot), slot);
}
}
template <typename P>
template <typename ValueType>
auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
if (empty()) {
mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
}
iterator iter = internal_upper_bound(key);
if (iter.node_ == nullptr) {
iter = end();
}
return internal_emplace(iter, std::forward<ValueType>(v));
}
template <typename P>
template <typename ValueType>
auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
if (!empty()) {
const key_type &key = params_type::key(v);
if (position == end() || !compare_keys(position.key(), key)) {
if (position == begin() ||
!compare_keys(key, std::prev(position).key())) {
// prev.key() <= key <= position.key()
return internal_emplace(position, std::forward<ValueType>(v));
}
} else {
++position;
if (position == end() || !compare_keys(position.key(), key)) {
// {original `position`}.key() < key < {current `position`}.key()
return internal_emplace(position, std::forward<ValueType>(v));
}
}
}
return insert_multi(std::forward<ValueType>(v));
}
template <typename P>
template <typename InputIterator>
void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_hint_multi(end(), *b);
}
}
template <typename P>
auto btree<P>::operator=(const btree &other) -> btree & {
if (this != &other) {
clear();
*mutable_key_comp() = other.key_comp();
if (absl::allocator_traits<
allocator_type>::propagate_on_container_copy_assignment::value) {
*mutable_allocator() = other.allocator();
}
copy_or_move_values_in_order(other);
}
return *this;
}
template <typename P>
auto btree<P>::operator=(btree &&other) noexcept -> btree & {
if (this != &other) {
clear();
using std::swap;
if (absl::allocator_traits<
allocator_type>::propagate_on_container_copy_assignment::value) {
swap(root_, other.root_);
// Note: `rightmost_` also contains the allocator and the key comparator.
swap(rightmost_, other.rightmost_);
swap(size_, other.size_);
} else {
if (allocator() == other.allocator()) {
swap(mutable_root(), other.mutable_root());
swap(*mutable_key_comp(), *other.mutable_key_comp());
swap(mutable_rightmost(), other.mutable_rightmost());
swap(size_, other.size_);
} else {
// We aren't allowed to propagate the allocator and the allocator is
// different so we can't take over its memory. We must move each element
// individually. We need both `other` and `this` to have `other`s key
// comparator while moving the values so we can't swap the key
// comparators.
*mutable_key_comp() = other.key_comp();
copy_or_move_values_in_order(other);
}
}
}
return *this;
}
template <typename P>
auto btree<P>::erase(iterator iter) -> iterator {
iter.node_->value_destroy(static_cast<field_type>(iter.position_),
mutable_allocator());
iter.update_generation();
const bool internal_delete = iter.node_->is_internal();
if (internal_delete) {
// Deletion of a value on an internal node. First, transfer the largest
// value from our left child here, then erase/rebalance from that position.
// We can get to the largest value from our left child by decrementing iter.
iterator internal_iter(iter);
--iter;
assert(iter.node_->is_leaf());
internal_iter.node_->transfer(
static_cast<size_type>(internal_iter.position_),
static_cast<size_type>(iter.position_), iter.node_,
mutable_allocator());
} else {
// Shift values after erased position in leaf. In the internal case, we
// don't need to do this because the leaf position is the end of the node.
const field_type transfer_from =
static_cast<field_type>(iter.position_ + 1);
const field_type num_to_transfer = iter.node_->finish() - transfer_from;
iter.node_->transfer_n(num_to_transfer,
static_cast<size_type>(iter.position_),
transfer_from, iter.node_, mutable_allocator());
}
// Update node finish and container size.
iter.node_->set_finish(iter.node_->finish() - 1);
--size_;
// We want to return the next value after the one we just erased. If we
// erased from an internal node (internal_delete == true), then the next
// value is ++(++iter). If we erased from a leaf node (internal_delete ==
// false) then the next value is ++iter. Note that ++iter may point to an
// internal node and the value in the internal node may move to a leaf node
// (iter.node_) when rebalancing is performed at the leaf level.
iterator res = rebalance_after_delete(iter);
// If we erased from an internal node, advance the iterator.
if (internal_delete) {
++res;
}
return res;
}
template <typename P>
auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
// Merge/rebalance as we walk back up the tree.
iterator res(iter);
bool first_iteration = true;
for (;;) {
if (iter.node_ == root()) {
try_shrink();
if (empty()) {
return end();
}
break;
}
if (iter.node_->count() >= kMinNodeValues) {
break;
}
bool merged = try_merge_or_rebalance(&iter);
// On the first iteration, we should update `res` with `iter` because `res`
// may have been invalidated.
if (first_iteration) {
res = iter;
first_iteration = false;
}
if (!merged) {
break;
}
iter.position_ = iter.node_->position();
iter.node_ = iter.node_->parent();
}
res.update_generation();
// Adjust our return value. If we're pointing at the end of a node, advance
// the iterator.
if (res.position_ == res.node_->finish()) {
res.position_ = res.node_->finish() - 1;
++res;
}
return res;
}
// Note: we tried implementing this more efficiently by erasing all of the
// elements in [begin, end) at once and then doing rebalancing once at the end
// (rather than interleaving deletion and rebalancing), but that adds a lot of
// complexity, which seems to outweigh the performance win.
template <typename P>
auto btree<P>::erase_range(iterator begin, iterator end)
-> std::pair<size_type, iterator> {
size_type count = static_cast<size_type>(end - begin);
assert(count >= 0);
if (count == 0) {
return {0, begin};
}
if (static_cast<size_type>(count) == size_) {
clear();
return {count, this->end()};
}
if (begin.node_ == end.node_) {
assert(end.position_ > begin.position_);
begin.node_->remove_values(
static_cast<field_type>(begin.position_),
static_cast<field_type>(end.position_ - begin.position_),
mutable_allocator());
size_ -= count;
return {count, rebalance_after_delete(begin)};
}
const size_type target_size = size_ - count;
while (size_ > target_size) {
if (begin.node_->is_leaf()) {
const size_type remaining_to_erase = size_ - target_size;
const size_type remaining_in_node =
static_cast<size_type>(begin.node_->finish() - begin.position_);
const field_type to_erase = static_cast<field_type>(
(std::min)(remaining_to_erase, remaining_in_node));
begin.node_->remove_values(static_cast<field_type>(begin.position_),
to_erase, mutable_allocator());
size_ -= to_erase;
begin = rebalance_after_delete(begin);
} else {
begin = erase(begin);
}
}
begin.update_generation();
return {count, begin};
}
template <typename P>
void btree<P>::clear() {
if (!empty()) {
node_type::clear_and_delete(root(), mutable_allocator());
}
mutable_root() = mutable_rightmost() = EmptyNode();
size_ = 0;
}
template <typename P>
void btree<P>::swap(btree &other) {
using std::swap;
if (absl::allocator_traits<
allocator_type>::propagate_on_container_swap::value) {
// Note: `rightmost_` also contains the allocator and the key comparator.
swap(rightmost_, other.rightmost_);
} else {
// It's undefined behavior if the allocators are unequal here.
assert(allocator() == other.allocator());
swap(mutable_rightmost(), other.mutable_rightmost());
swap(*mutable_key_comp(), *other.mutable_key_comp());
}
swap(mutable_root(), other.mutable_root());
swap(size_, other.size_);
}
template <typename P>
void btree<P>::verify() const {
assert(root() != nullptr);
assert(leftmost() != nullptr);
assert(rightmost() != nullptr);
assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
assert(leftmost() == (++const_iterator(root(), -1)).node_);
assert(rightmost() == (--const_iterator(root(), root()->finish())).node_);
assert(leftmost()->is_leaf());
assert(rightmost()->is_leaf());
}
template <typename P>
void btree<P>::rebalance_or_split(iterator *iter) {
node_type *&node = iter->node_;
int &insert_position = iter->position_;
assert(node->count() == node->max_count());
assert(kNodeSlots == node->max_count());
// First try to make room on the node by rebalancing.
node_type *parent = node->parent();
if (node != root()) {
if (node->position() > parent->start()) {
// Try rebalancing with our left sibling.
node_type *left = parent->child(node->position() - 1);
assert(left->max_count() == kNodeSlots);
if (left->count() < kNodeSlots) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the end of the right node then we bias rebalancing to
// fill up the left node.
field_type to_move =
(kNodeSlots - left->count()) /
(1 + (static_cast<field_type>(insert_position) < kNodeSlots));
to_move = (std::max)(field_type{1}, to_move);
if (static_cast<field_type>(insert_position) - to_move >=
node->start() ||
left->count() + to_move < kNodeSlots) {
left->rebalance_right_to_left(to_move, node, mutable_allocator());
assert(node->max_count() - node->count() == to_move);
insert_position = static_cast<int>(
static_cast<field_type>(insert_position) - to_move);
if (insert_position < node->start()) {
insert_position = insert_position + left->count() + 1;
node = left;
}
assert(node->count() < node->max_count());
return;
}
}
}
if (node->position() < parent->finish()) {
// Try rebalancing with our right sibling.
node_type *right = parent->child(node->position() + 1);
assert(right->max_count() == kNodeSlots);
if (right->count() < kNodeSlots) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the beginning of the left node then we bias rebalancing
// to fill up the right node.
field_type to_move = (kNodeSlots - right->count()) /
(1 + (insert_position > node->start()));
to_move = (std::max)(field_type{1}, to_move);
if (static_cast<field_type>(insert_position) <=
node->finish() - to_move ||
right->count() + to_move < kNodeSlots) {
node->rebalance_left_to_right(to_move, right, mutable_allocator());
if (insert_position > node->finish()) {
insert_position = insert_position - node->count() - 1;
node = right;
}
assert(node->count() < node->max_count());
return;
}
}
}
// Rebalancing failed, make sure there is room on the parent node for a new
// value.
assert(parent->max_count() == kNodeSlots);
if (parent->count() == kNodeSlots) {
iterator parent_iter(parent, node->position());
rebalance_or_split(&parent_iter);
parent = node->parent();
}
} else {
// Rebalancing not possible because this is the root node.
// Create a new root node and set the current root node as the child of the
// new root.
parent = new_internal_node(/*position=*/0, parent);
parent->set_generation(root()->generation());
parent->init_child(parent->start(), node);
mutable_root() = parent;
// If the former root was a leaf node, then it's now the rightmost node.
assert(parent->start_child()->is_internal() ||
parent->start_child() == rightmost());
}
// Split the node.
node_type *split_node;
if (node->is_leaf()) {
split_node = new_leaf_node(node->position() + 1, parent);
node->split(insert_position, split_node, mutable_allocator());
if (rightmost() == node) mutable_rightmost() = split_node;
} else {
split_node = new_internal_node(node->position() + 1, parent);
node->split(insert_position, split_node, mutable_allocator());
}
if (insert_position > node->finish()) {
insert_position = insert_position - node->count() - 1;
node = split_node;
}
}
template <typename P>
void btree<P>::merge_nodes(node_type *left, node_type *right) {
left->merge(right, mutable_allocator());
if (rightmost() == right) mutable_rightmost() = left;
}
template <typename P>
bool btree<P>::try_merge_or_rebalance(iterator *iter) {
node_type *parent = iter->node_->parent();
if (iter->node_->position() > parent->start()) {
// Try merging with our left sibling.
node_type *left = parent->child(iter->node_->position() - 1);
assert(left->max_count() == kNodeSlots);
if (1U + left->count() + iter->node_->count() <= kNodeSlots) {
iter->position_ += 1 + left->count();
merge_nodes(left, iter->node_);
iter->node_ = left;
return true;
}
}
if (iter->node_->position() < parent->finish()) {
// Try merging with our right sibling.
node_type *right = parent->child(iter->node_->position() + 1);
assert(right->max_count() == kNodeSlots);
if (1U + iter->node_->count() + right->count() <= kNodeSlots) {
merge_nodes(iter->node_, right);
return true;
}
// Try rebalancing with our right sibling. We don't perform rebalancing if
// we deleted the first element from iter->node_ and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the front of the tree.
if (right->count() > kMinNodeValues &&
(iter->node_->count() == 0 || iter->position_ > iter->node_->start())) {
field_type to_move = (right->count() - iter->node_->count()) / 2;
to_move =
(std::min)(to_move, static_cast<field_type>(right->count() - 1));
iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator());
return false;
}
}
if (iter->node_->position() > parent->start()) {
// Try rebalancing with our left sibling. We don't perform rebalancing if
// we deleted the last element from iter->node_ and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the back of the tree.
node_type *left = parent->child(iter->node_->position() - 1);
if (left->count() > kMinNodeValues &&
(iter->node_->count() == 0 ||
iter->position_ < iter->node_->finish())) {
field_type to_move = (left->count() - iter->node_->count()) / 2;
to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1));
left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator());
iter->position_ += to_move;
return false;
}
}
return false;
}
template <typename P>
void btree<P>::try_shrink() {
node_type *orig_root = root();
if (orig_root->count() > 0) {
return;
}
// Deleted the last item on the root node, shrink the height of the tree.
if (orig_root->is_leaf()) {
assert(size() == 0);
mutable_root() = mutable_rightmost() = EmptyNode();
} else {
node_type *child = orig_root->start_child();
child->make_root();
mutable_root() = child;
}
node_type::clear_and_delete(orig_root, mutable_allocator());
}
template <typename P>
template <typename IterType>
inline IterType btree<P>::internal_last(IterType iter) {
assert(iter.node_ != nullptr);
while (iter.position_ == iter.node_->finish()) {
iter.position_ = iter.node_->position();
iter.node_ = iter.node_->parent();
if (iter.node_->is_leaf()) {
iter.node_ = nullptr;
break;
}
}
iter.update_generation();
return iter;
}
template <typename P>
template <typename... Args>
inline auto btree<P>::internal_emplace(iterator iter, Args &&...args)
-> iterator {
if (iter.node_->is_internal()) {
// We can't insert on an internal node. Instead, we'll insert after the
// previous value which is guaranteed to be on a leaf node.
--iter;
++iter.position_;
}
const field_type max_count = iter.node_->max_count();
allocator_type *alloc = mutable_allocator();
const auto transfer_and_delete = [&](node_type *old_node,
node_type *new_node) {
new_node->transfer_n(old_node->count(), new_node->start(),
old_node->start(), old_node, alloc);
new_node->set_finish(old_node->finish());
old_node->set_finish(old_node->start());
new_node->set_generation(old_node->generation());
node_type::clear_and_delete(old_node, alloc);
};
const auto replace_leaf_root_node = [&](field_type new_node_size) {
assert(iter.node_ == root());
node_type *old_root = iter.node_;
node_type *new_root = iter.node_ = new_leaf_root_node(new_node_size);
transfer_and_delete(old_root, new_root);
mutable_root() = mutable_rightmost() = new_root;
};
bool replaced_node = false;
if (iter.node_->count() == max_count) {
// Make room in the leaf for the new item.
if (max_count < kNodeSlots) {
// Insertion into the root where the root is smaller than the full node
// size. Simply grow the size of the root node.
replace_leaf_root_node(static_cast<field_type>(
(std::min)(static_cast<int>(kNodeSlots), 2 * max_count)));
replaced_node = true;
} else {
rebalance_or_split(&iter);
}
}
(void)replaced_node;
#ifdef ABSL_HAVE_ADDRESS_SANITIZER
if (!replaced_node) {
assert(iter.node_->is_leaf());
if (iter.node_->is_root()) {
replace_leaf_root_node(max_count);
} else {
node_type *old_node = iter.node_;
const bool was_rightmost = rightmost() == old_node;
const bool was_leftmost = leftmost() == old_node;
node_type *parent = old_node->parent();
const field_type position = old_node->position();
node_type *new_node = iter.node_ = new_leaf_node(position, parent);
parent->set_child_noupdate_position(position, new_node);
transfer_and_delete(old_node, new_node);
if (was_rightmost) mutable_rightmost() = new_node;
// The leftmost node is stored as the parent of the root node.
if (was_leftmost) root()->set_parent(new_node);
}
}
#endif
iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc,
std::forward<Args>(args)...);
assert(
iter.node_->is_ordered_correctly(static_cast<field_type>(iter.position_),
original_key_compare(key_comp())) &&
"If this assert fails, then either (1) the comparator may violate "
"transitivity, i.e. comp(a,b) && comp(b,c) -> comp(a,c) (see "
"https://en.cppreference.com/w/cpp/named_req/Compare), or (2) a "
"key may have been mutated after it was inserted into the tree.");
++size_;
iter.update_generation();
return iter;
}
template <typename P>
template <typename K>
inline auto btree<P>::internal_locate(const K &key) const
-> SearchResult<iterator, is_key_compare_to::value> {
iterator iter(const_cast<node_type *>(root()));
for (;;) {
SearchResult<size_type, is_key_compare_to::value> res =
iter.node_->lower_bound(key, key_comp());
iter.position_ = static_cast<int>(res.value);
if (res.IsEq()) {
return {iter, MatchKind::kEq};
}
// Note: in the non-key-compare-to case, we don't need to walk all the way
// down the tree if the keys are equal, but determining equality would
// require doing an extra comparison on each node on the way down, and we
// will need to go all the way to the leaf node in the expected case.
if (iter.node_->is_leaf()) {
break;
}
iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
}
// Note: in the non-key-compare-to case, the key may actually be equivalent
// here (and the MatchKind::kNe is ignored).
return {iter, MatchKind::kNe};
}
template <typename P>
template <typename K>
auto btree<P>::internal_lower_bound(const K &key) const
-> SearchResult<iterator, is_key_compare_to::value> {
if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key);
ret.value = internal_last(ret.value);
return ret;
}
iterator iter(const_cast<node_type *>(root()));
SearchResult<size_type, is_key_compare_to::value> res;
bool seen_eq = false;
for (;;) {
res = iter.node_->lower_bound(key, key_comp());
iter.position_ = static_cast<int>(res.value);
if (iter.node_->is_leaf()) {
break;
}
seen_eq = seen_eq || res.IsEq();
iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
}
if (res.IsEq()) return {iter, MatchKind::kEq};
return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe};
}
template <typename P>
template <typename K>
auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
iterator iter(const_cast<node_type *>(root()));
for (;;) {
iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp()));
if (iter.node_->is_leaf()) {
break;
}
iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
}
return internal_last(iter);
}
template <typename P>
template <typename K>
auto btree<P>::internal_find(const K &key) const -> iterator {
SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
if (res.HasMatch()) {
if (res.IsEq()) {
return res.value;
}
} else {
const iterator iter = internal_last(res.value);
if (iter.node_ != nullptr && !compare_keys(key, iter.key())) {
return iter;
}
}
return {nullptr, 0};
}
template <typename P>
typename btree<P>::size_type btree<P>::internal_verify(
const node_type *node, const key_type *lo, const key_type *hi) const {
assert(node->count() > 0);
assert(node->count() <= node->max_count());
if (lo) {
assert(!compare_keys(node->key(node->start()), *lo));
}
if (hi) {
assert(!compare_keys(*hi, node->key(node->finish() - 1)));
}
for (int i = node->start() + 1; i < node->finish(); ++i) {
assert(!compare_keys(node->key(i), node->key(i - 1)));
}
size_type count = node->count();
if (node->is_internal()) {
for (field_type i = node->start(); i <= node->finish(); ++i) {
assert(node->child(i) != nullptr);
assert(node->child(i)->parent() == node);
assert(node->child(i)->position() == i);
count += internal_verify(node->child(i),
i == node->start() ? lo : &node->key(i - 1),
i == node->finish() ? hi : &node->key(i));
}
}
return count;
}
struct btree_access {
template <typename BtreeContainer, typename Pred>
static auto erase_if(BtreeContainer &container, Pred pred) ->
typename BtreeContainer::size_type {
const auto initial_size = container.size();
auto &tree = container.tree_;
auto *alloc = tree.mutable_allocator();
for (auto it = container.begin(); it != container.end();) {
if (!pred(*it)) {
++it;
continue;
}
auto *node = it.node_;
if (node->is_internal()) {
// Handle internal nodes normally.
it = container.erase(it);
continue;
}
// If this is a leaf node, then we do all the erases from this node
// at once before doing rebalancing.
// The current position to transfer slots to.
int to_pos = it.position_;
node->value_destroy(it.position_, alloc);
while (++it.position_ < node->finish()) {
it.update_generation();
if (pred(*it)) {
node->value_destroy(it.position_, alloc);
} else {
node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc);
}
}
const int num_deleted = node->finish() - to_pos;
tree.size_ -= num_deleted;
node->set_finish(to_pos);
it.position_ = to_pos;
it = tree.rebalance_after_delete(it);
}
return initial_size - container.size();
}
};
#undef ABSL_BTREE_ENABLE_GENERATIONS
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_BTREE_H_
|