summaryrefslogtreecommitdiff
path: root/absl/container/btree_set.h
blob: 986d27da6f79940aaeeb0b639c61cde221582126 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: btree_set.h
// -----------------------------------------------------------------------------
//
// This header file defines B-tree sets: sorted associative containers of
// values.
//
//     * `absl::btree_set<>`
//     * `absl::btree_multiset<>`
//
// These B-tree types are similar to the corresponding types in the STL
// (`std::set` and `std::multiset`) and generally conform to the STL interfaces
// of those types. However, because they are implemented using B-trees, they
// are more efficient in most situations.
//
// Unlike `std::set` and `std::multiset`, which are commonly implemented using
// red-black tree nodes, B-tree sets use more generic B-tree nodes able to hold
// multiple values per node. Holding multiple values per node often makes
// B-tree sets perform better than their `std::set` counterparts, because
// multiple entries can be checked within the same cache hit.
//
// However, these types should not be considered drop-in replacements for
// `std::set` and `std::multiset` as there are some API differences, which are
// noted in this header file. The most consequential differences with respect to
// migrating to b-tree from the STL types are listed in the next paragraph.
// Other API differences are minor.
//
// Importantly, insertions and deletions may invalidate outstanding iterators,
// pointers, and references to elements. Such invalidations are typically only
// an issue if insertion and deletion operations are interleaved with the use of
// more than one iterator, pointer, or reference simultaneously. For this
// reason, `insert()`, `erase()`, and `extract_and_get_next()` return a valid
// iterator at the current position.
//
// Another API difference is that btree iterators can be subtracted, and this
// is faster than using std::distance.
//
// B-tree sets are not exception-safe.

#ifndef ABSL_CONTAINER_BTREE_SET_H_
#define ABSL_CONTAINER_BTREE_SET_H_

#include "absl/base/attributes.h"
#include "absl/container/internal/btree.h"  // IWYU pragma: export
#include "absl/container/internal/btree_container.h"  // IWYU pragma: export

namespace absl {
ABSL_NAMESPACE_BEGIN

namespace container_internal {

template <typename Key>
struct set_slot_policy;

template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
          bool IsMulti>
struct set_params;

}  // namespace container_internal

// absl::btree_set<>
//
// An `absl::btree_set<K>` is an ordered associative container of unique key
// values designed to be a more efficient replacement for `std::set` (in most
// cases).
//
// Keys are sorted using an (optional) comparison function, which defaults to
// `std::less<K>`.
//
// An `absl::btree_set<K>` uses a default allocator of `std::allocator<K>` to
// allocate (and deallocate) nodes, and construct and destruct values within
// those nodes. You may instead specify a custom allocator `A` (which in turn
// requires specifying a custom comparator `C`) as in
// `absl::btree_set<K, C, A>`.
//
template <typename Key, typename Compare = std::less<Key>,
          typename Alloc = std::allocator<Key>>
class ABSL_INTERNAL_ATTRIBUTE_OWNER btree_set
    : public container_internal::btree_set_container<
          container_internal::btree<container_internal::set_params<
              Key, Compare, Alloc, /*TargetNodeSize=*/256,
              /*IsMulti=*/false>>> {
  using Base = typename btree_set::btree_set_container;

 public:
  // Constructors and Assignment Operators
  //
  // A `btree_set` supports the same overload set as `std::set`
  // for construction and assignment:
  //
  // * Default constructor
  //
  //   absl::btree_set<std::string> set1;
  //
  // * Initializer List constructor
  //
  //   absl::btree_set<std::string> set2 =
  //       {{"huey"}, {"dewey"}, {"louie"},};
  //
  // * Copy constructor
  //
  //   absl::btree_set<std::string> set3(set2);
  //
  // * Copy assignment operator
  //
  //  absl::btree_set<std::string> set4;
  //  set4 = set3;
  //
  // * Move constructor
  //
  //   // Move is guaranteed efficient
  //   absl::btree_set<std::string> set5(std::move(set4));
  //
  // * Move assignment operator
  //
  //   // May be efficient if allocators are compatible
  //   absl::btree_set<std::string> set6;
  //   set6 = std::move(set5);
  //
  // * Range constructor
  //
  //   std::vector<std::string> v = {"a", "b"};
  //   absl::btree_set<std::string> set7(v.begin(), v.end());
  btree_set() {}
  using Base::Base;

  // btree_set::begin()
  //
  // Returns an iterator to the beginning of the `btree_set`.
  using Base::begin;

  // btree_set::cbegin()
  //
  // Returns a const iterator to the beginning of the `btree_set`.
  using Base::cbegin;

  // btree_set::end()
  //
  // Returns an iterator to the end of the `btree_set`.
  using Base::end;

  // btree_set::cend()
  //
  // Returns a const iterator to the end of the `btree_set`.
  using Base::cend;

  // btree_set::empty()
  //
  // Returns whether or not the `btree_set` is empty.
  using Base::empty;

  // btree_set::max_size()
  //
  // Returns the largest theoretical possible number of elements within a
  // `btree_set` under current memory constraints. This value can be thought
  // of as the largest value of `std::distance(begin(), end())` for a
  // `btree_set<Key>`.
  using Base::max_size;

  // btree_set::size()
  //
  // Returns the number of elements currently within the `btree_set`.
  using Base::size;

  // btree_set::clear()
  //
  // Removes all elements from the `btree_set`. Invalidates any references,
  // pointers, or iterators referring to contained elements.
  using Base::clear;

  // btree_set::erase()
  //
  // Erases elements within the `btree_set`. Overloads are listed below.
  //
  // iterator erase(iterator position):
  // iterator erase(const_iterator position):
  //
  //   Erases the element at `position` of the `btree_set`, returning
  //   the iterator pointing to the element after the one that was erased
  //   (or end() if none exists).
  //
  // iterator erase(const_iterator first, const_iterator last):
  //
  //   Erases the elements in the open interval [`first`, `last`), returning
  //   the iterator pointing to the element after the interval that was erased
  //   (or end() if none exists).
  //
  // template <typename K> size_type erase(const K& key):
  //
  //   Erases the element with the matching key, if it exists, returning the
  //   number of elements erased (0 or 1).
  using Base::erase;

  // btree_set::insert()
  //
  // Inserts an element of the specified value into the `btree_set`,
  // returning an iterator pointing to the newly inserted element, provided that
  // an element with the given key does not already exist. If an insertion
  // occurs, any references, pointers, or iterators are invalidated.
  // Overloads are listed below.
  //
  // std::pair<iterator,bool> insert(const value_type& value):
  //
  //   Inserts a value into the `btree_set`. Returns a pair consisting of an
  //   iterator to the inserted element (or to the element that prevented the
  //   insertion) and a bool denoting whether the insertion took place.
  //
  // std::pair<iterator,bool> insert(value_type&& value):
  //
  //   Inserts a moveable value into the `btree_set`. Returns a pair
  //   consisting of an iterator to the inserted element (or to the element that
  //   prevented the insertion) and a bool denoting whether the insertion took
  //   place.
  //
  // iterator insert(const_iterator hint, const value_type& value):
  // iterator insert(const_iterator hint, value_type&& value):
  //
  //   Inserts a value, using the position of `hint` as a non-binding suggestion
  //   for where to begin the insertion search. Returns an iterator to the
  //   inserted element, or to the existing element that prevented the
  //   insertion.
  //
  // void insert(InputIterator first, InputIterator last):
  //
  //   Inserts a range of values [`first`, `last`).
  //
  // void insert(std::initializer_list<init_type> ilist):
  //
  //   Inserts the elements within the initializer list `ilist`.
  using Base::insert;

  // btree_set::emplace()
  //
  // Inserts an element of the specified value by constructing it in-place
  // within the `btree_set`, provided that no element with the given key
  // already exists.
  //
  // The element may be constructed even if there already is an element with the
  // key in the container, in which case the newly constructed element will be
  // destroyed immediately.
  //
  // If an insertion occurs, any references, pointers, or iterators are
  // invalidated.
  using Base::emplace;

  // btree_set::emplace_hint()
  //
  // Inserts an element of the specified value by constructing it in-place
  // within the `btree_set`, using the position of `hint` as a non-binding
  // suggestion for where to begin the insertion search, and only inserts
  // provided that no element with the given key already exists.
  //
  // The element may be constructed even if there already is an element with the
  // key in the container, in which case the newly constructed element will be
  // destroyed immediately.
  //
  // If an insertion occurs, any references, pointers, or iterators are
  // invalidated.
  using Base::emplace_hint;

  // btree_set::extract()
  //
  // Extracts the indicated element, erasing it in the process, and returns it
  // as a C++17-compatible node handle. Any references, pointers, or iterators
  // are invalidated. Overloads are listed below.
  //
  // node_type extract(const_iterator position):
  //
  //   Extracts the element at the indicated position and returns a node handle
  //   owning that extracted data.
  //
  // template <typename K> node_type extract(const K& k):
  //
  //   Extracts the element with the key matching the passed key value and
  //   returns a node handle owning that extracted data. If the `btree_set`
  //   does not contain an element with a matching key, this function returns an
  //   empty node handle.
  //
  // NOTE: In this context, `node_type` refers to the C++17 concept of a
  // move-only type that owns and provides access to the elements in associative
  // containers (https://en.cppreference.com/w/cpp/container/node_handle).
  // It does NOT refer to the data layout of the underlying btree.
  using Base::extract;

  // btree_set::extract_and_get_next()
  //
  // Extracts the indicated element, erasing it in the process, and returns it
  // as a C++17-compatible node handle along with an iterator to the next
  // element.
  //
  // extract_and_get_next_return_type extract_and_get_next(
  //     const_iterator position):
  //
  //   Extracts the element at the indicated position, returns a struct
  //   containing a member named `node`: a node handle owning that extracted
  //   data and a member named `next`: an iterator pointing to the next element
  //   in the btree.
  using Base::extract_and_get_next;

  // btree_set::merge()
  //
  // Extracts elements from a given `source` btree_set into this
  // `btree_set`. If the destination `btree_set` already contains an
  // element with an equivalent key, that element is not extracted.
  using Base::merge;

  // btree_set::swap(btree_set& other)
  //
  // Exchanges the contents of this `btree_set` with those of the `other`
  // btree_set, avoiding invocation of any move, copy, or swap operations on
  // individual elements.
  //
  // All iterators and references on the `btree_set` remain valid, excepting
  // for the past-the-end iterator, which is invalidated.
  using Base::swap;

  // btree_set::contains()
  //
  // template <typename K> bool contains(const K& key) const:
  //
  // Determines whether an element comparing equal to the given `key` exists
  // within the `btree_set`, returning `true` if so or `false` otherwise.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::contains;

  // btree_set::count()
  //
  // template <typename K> size_type count(const K& key) const:
  //
  // Returns the number of elements comparing equal to the given `key` within
  // the `btree_set`. Note that this function will return either `1` or `0`
  // since duplicate elements are not allowed within a `btree_set`.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::count;

  // btree_set::equal_range()
  //
  // Returns a closed range [first, last], defined by a `std::pair` of two
  // iterators, containing all elements with the passed key in the
  // `btree_set`.
  using Base::equal_range;

  // btree_set::find()
  //
  // template <typename K> iterator find(const K& key):
  // template <typename K> const_iterator find(const K& key) const:
  //
  // Finds an element with the passed `key` within the `btree_set`.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::find;

  // btree_set::lower_bound()
  //
  // template <typename K> iterator lower_bound(const K& key):
  // template <typename K> const_iterator lower_bound(const K& key) const:
  //
  // Finds the first element that is not less than `key` within the `btree_set`.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::lower_bound;

  // btree_set::upper_bound()
  //
  // template <typename K> iterator upper_bound(const K& key):
  // template <typename K> const_iterator upper_bound(const K& key) const:
  //
  // Finds the first element that is greater than `key` within the `btree_set`.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::upper_bound;

  // btree_set::get_allocator()
  //
  // Returns the allocator function associated with this `btree_set`.
  using Base::get_allocator;

  // btree_set::key_comp();
  //
  // Returns the key comparator associated with this `btree_set`.
  using Base::key_comp;

  // btree_set::value_comp();
  //
  // Returns the value comparator associated with this `btree_set`. The keys to
  // sort the elements are the values themselves, therefore `value_comp` and its
  // sibling member function `key_comp` are equivalent.
  using Base::value_comp;
};

// absl::swap(absl::btree_set<>, absl::btree_set<>)
//
// Swaps the contents of two `absl::btree_set` containers.
template <typename K, typename C, typename A>
void swap(btree_set<K, C, A> &x, btree_set<K, C, A> &y) {
  return x.swap(y);
}

// absl::erase_if(absl::btree_set<>, Pred)
//
// Erases all elements that satisfy the predicate pred from the container.
// Returns the number of erased elements.
template <typename K, typename C, typename A, typename Pred>
typename btree_set<K, C, A>::size_type erase_if(btree_set<K, C, A> &set,
                                                Pred pred) {
  return container_internal::btree_access::erase_if(set, std::move(pred));
}

// absl::btree_multiset<>
//
// An `absl::btree_multiset<K>` is an ordered associative container of
// keys and associated values designed to be a more efficient replacement
// for `std::multiset` (in most cases). Unlike `absl::btree_set`, a B-tree
// multiset allows equivalent elements.
//
// Keys are sorted using an (optional) comparison function, which defaults to
// `std::less<K>`.
//
// An `absl::btree_multiset<K>` uses a default allocator of `std::allocator<K>`
// to allocate (and deallocate) nodes, and construct and destruct values within
// those nodes. You may instead specify a custom allocator `A` (which in turn
// requires specifying a custom comparator `C`) as in
// `absl::btree_multiset<K, C, A>`.
//
template <typename Key, typename Compare = std::less<Key>,
          typename Alloc = std::allocator<Key>>
class ABSL_INTERNAL_ATTRIBUTE_OWNER btree_multiset
    : public container_internal::btree_multiset_container<
          container_internal::btree<container_internal::set_params<
              Key, Compare, Alloc, /*TargetNodeSize=*/256,
              /*IsMulti=*/true>>> {
  using Base = typename btree_multiset::btree_multiset_container;

 public:
  // Constructors and Assignment Operators
  //
  // A `btree_multiset` supports the same overload set as `std::set`
  // for construction and assignment:
  //
  // * Default constructor
  //
  //   absl::btree_multiset<std::string> set1;
  //
  // * Initializer List constructor
  //
  //   absl::btree_multiset<std::string> set2 =
  //       {{"huey"}, {"dewey"}, {"louie"},};
  //
  // * Copy constructor
  //
  //   absl::btree_multiset<std::string> set3(set2);
  //
  // * Copy assignment operator
  //
  //  absl::btree_multiset<std::string> set4;
  //  set4 = set3;
  //
  // * Move constructor
  //
  //   // Move is guaranteed efficient
  //   absl::btree_multiset<std::string> set5(std::move(set4));
  //
  // * Move assignment operator
  //
  //   // May be efficient if allocators are compatible
  //   absl::btree_multiset<std::string> set6;
  //   set6 = std::move(set5);
  //
  // * Range constructor
  //
  //   std::vector<std::string> v = {"a", "b"};
  //   absl::btree_multiset<std::string> set7(v.begin(), v.end());
  btree_multiset() {}
  using Base::Base;

  // btree_multiset::begin()
  //
  // Returns an iterator to the beginning of the `btree_multiset`.
  using Base::begin;

  // btree_multiset::cbegin()
  //
  // Returns a const iterator to the beginning of the `btree_multiset`.
  using Base::cbegin;

  // btree_multiset::end()
  //
  // Returns an iterator to the end of the `btree_multiset`.
  using Base::end;

  // btree_multiset::cend()
  //
  // Returns a const iterator to the end of the `btree_multiset`.
  using Base::cend;

  // btree_multiset::empty()
  //
  // Returns whether or not the `btree_multiset` is empty.
  using Base::empty;

  // btree_multiset::max_size()
  //
  // Returns the largest theoretical possible number of elements within a
  // `btree_multiset` under current memory constraints. This value can be
  // thought of as the largest value of `std::distance(begin(), end())` for a
  // `btree_multiset<Key>`.
  using Base::max_size;

  // btree_multiset::size()
  //
  // Returns the number of elements currently within the `btree_multiset`.
  using Base::size;

  // btree_multiset::clear()
  //
  // Removes all elements from the `btree_multiset`. Invalidates any references,
  // pointers, or iterators referring to contained elements.
  using Base::clear;

  // btree_multiset::erase()
  //
  // Erases elements within the `btree_multiset`. Overloads are listed below.
  //
  // iterator erase(iterator position):
  // iterator erase(const_iterator position):
  //
  //   Erases the element at `position` of the `btree_multiset`, returning
  //   the iterator pointing to the element after the one that was erased
  //   (or end() if none exists).
  //
  // iterator erase(const_iterator first, const_iterator last):
  //
  //   Erases the elements in the open interval [`first`, `last`), returning
  //   the iterator pointing to the element after the interval that was erased
  //   (or end() if none exists).
  //
  // template <typename K> size_type erase(const K& key):
  //
  //   Erases the elements matching the key, if any exist, returning the
  //   number of elements erased.
  using Base::erase;

  // btree_multiset::insert()
  //
  // Inserts an element of the specified value into the `btree_multiset`,
  // returning an iterator pointing to the newly inserted element.
  // Any references, pointers, or iterators are invalidated.  Overloads are
  // listed below.
  //
  // iterator insert(const value_type& value):
  //
  //   Inserts a value into the `btree_multiset`, returning an iterator to the
  //   inserted element.
  //
  // iterator insert(value_type&& value):
  //
  //   Inserts a moveable value into the `btree_multiset`, returning an iterator
  //   to the inserted element.
  //
  // iterator insert(const_iterator hint, const value_type& value):
  // iterator insert(const_iterator hint, value_type&& value):
  //
  //   Inserts a value, using the position of `hint` as a non-binding suggestion
  //   for where to begin the insertion search. Returns an iterator to the
  //   inserted element.
  //
  // void insert(InputIterator first, InputIterator last):
  //
  //   Inserts a range of values [`first`, `last`).
  //
  // void insert(std::initializer_list<init_type> ilist):
  //
  //   Inserts the elements within the initializer list `ilist`.
  using Base::insert;

  // btree_multiset::emplace()
  //
  // Inserts an element of the specified value by constructing it in-place
  // within the `btree_multiset`. Any references, pointers, or iterators are
  // invalidated.
  using Base::emplace;

  // btree_multiset::emplace_hint()
  //
  // Inserts an element of the specified value by constructing it in-place
  // within the `btree_multiset`, using the position of `hint` as a non-binding
  // suggestion for where to begin the insertion search.
  //
  // Any references, pointers, or iterators are invalidated.
  using Base::emplace_hint;

  // btree_multiset::extract()
  //
  // Extracts the indicated element, erasing it in the process, and returns it
  // as a C++17-compatible node handle. Overloads are listed below.
  //
  // node_type extract(const_iterator position):
  //
  //   Extracts the element at the indicated position and returns a node handle
  //   owning that extracted data.
  //
  // template <typename K> node_type extract(const K& k):
  //
  //   Extracts the element with the key matching the passed key value and
  //   returns a node handle owning that extracted data. If the `btree_multiset`
  //   does not contain an element with a matching key, this function returns an
  //   empty node handle.
  //
  // NOTE: In this context, `node_type` refers to the C++17 concept of a
  // move-only type that owns and provides access to the elements in associative
  // containers (https://en.cppreference.com/w/cpp/container/node_handle).
  // It does NOT refer to the data layout of the underlying btree.
  using Base::extract;

  // btree_multiset::extract_and_get_next()
  //
  // Extracts the indicated element, erasing it in the process, and returns it
  // as a C++17-compatible node handle along with an iterator to the next
  // element.
  //
  // extract_and_get_next_return_type extract_and_get_next(
  //     const_iterator position):
  //
  //   Extracts the element at the indicated position, returns a struct
  //   containing a member named `node`: a node handle owning that extracted
  //   data and a member named `next`: an iterator pointing to the next element
  //   in the btree.
  using Base::extract_and_get_next;

  // btree_multiset::merge()
  //
  // Extracts all elements from a given `source` btree_multiset into this
  // `btree_multiset`.
  using Base::merge;

  // btree_multiset::swap(btree_multiset& other)
  //
  // Exchanges the contents of this `btree_multiset` with those of the `other`
  // btree_multiset, avoiding invocation of any move, copy, or swap operations
  // on individual elements.
  //
  // All iterators and references on the `btree_multiset` remain valid,
  // excepting for the past-the-end iterator, which is invalidated.
  using Base::swap;

  // btree_multiset::contains()
  //
  // template <typename K> bool contains(const K& key) const:
  //
  // Determines whether an element comparing equal to the given `key` exists
  // within the `btree_multiset`, returning `true` if so or `false` otherwise.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::contains;

  // btree_multiset::count()
  //
  // template <typename K> size_type count(const K& key) const:
  //
  // Returns the number of elements comparing equal to the given `key` within
  // the `btree_multiset`.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::count;

  // btree_multiset::equal_range()
  //
  // Returns a closed range [first, last], defined by a `std::pair` of two
  // iterators, containing all elements with the passed key in the
  // `btree_multiset`.
  using Base::equal_range;

  // btree_multiset::find()
  //
  // template <typename K> iterator find(const K& key):
  // template <typename K> const_iterator find(const K& key) const:
  //
  // Finds an element with the passed `key` within the `btree_multiset`.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::find;

  // btree_multiset::lower_bound()
  //
  // template <typename K> iterator lower_bound(const K& key):
  // template <typename K> const_iterator lower_bound(const K& key) const:
  //
  // Finds the first element that is not less than `key` within the
  // `btree_multiset`.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::lower_bound;

  // btree_multiset::upper_bound()
  //
  // template <typename K> iterator upper_bound(const K& key):
  // template <typename K> const_iterator upper_bound(const K& key) const:
  //
  // Finds the first element that is greater than `key` within the
  // `btree_multiset`.
  //
  // Supports heterogeneous lookup, provided that the set has a compatible
  // heterogeneous comparator.
  using Base::upper_bound;

  // btree_multiset::get_allocator()
  //
  // Returns the allocator function associated with this `btree_multiset`.
  using Base::get_allocator;

  // btree_multiset::key_comp();
  //
  // Returns the key comparator associated with this `btree_multiset`.
  using Base::key_comp;

  // btree_multiset::value_comp();
  //
  // Returns the value comparator associated with this `btree_multiset`. The
  // keys to sort the elements are the values themselves, therefore `value_comp`
  // and its sibling member function `key_comp` are equivalent.
  using Base::value_comp;
};

// absl::swap(absl::btree_multiset<>, absl::btree_multiset<>)
//
// Swaps the contents of two `absl::btree_multiset` containers.
template <typename K, typename C, typename A>
void swap(btree_multiset<K, C, A> &x, btree_multiset<K, C, A> &y) {
  return x.swap(y);
}

// absl::erase_if(absl::btree_multiset<>, Pred)
//
// Erases all elements that satisfy the predicate pred from the container.
// Returns the number of erased elements.
template <typename K, typename C, typename A, typename Pred>
typename btree_multiset<K, C, A>::size_type erase_if(
   btree_multiset<K, C, A> & set, Pred pred) {
  return container_internal::btree_access::erase_if(set, std::move(pred));
}

namespace container_internal {

// This type implements the necessary functions from the
// absl::container_internal::slot_type interface for btree_(multi)set.
template <typename Key>
struct set_slot_policy {
  using slot_type = Key;
  using value_type = Key;
  using mutable_value_type = Key;

  static value_type &element(slot_type *slot) { return *slot; }
  static const value_type &element(const slot_type *slot) { return *slot; }

  template <typename Alloc, class... Args>
  static void construct(Alloc *alloc, slot_type *slot, Args &&...args) {
    absl::allocator_traits<Alloc>::construct(*alloc, slot,
                                             std::forward<Args>(args)...);
  }

  template <typename Alloc>
  static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
    absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other));
  }

  template <typename Alloc>
  static void construct(Alloc *alloc, slot_type *slot, const slot_type *other) {
    absl::allocator_traits<Alloc>::construct(*alloc, slot, *other);
  }

  template <typename Alloc>
  static void destroy(Alloc *alloc, slot_type *slot) {
    absl::allocator_traits<Alloc>::destroy(*alloc, slot);
  }
};

// A parameters structure for holding the type parameters for a btree_set.
// Compare and Alloc should be nothrow copy-constructible.
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
          bool IsMulti>
struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, IsMulti,
                                  /*IsMap=*/false, set_slot_policy<Key>> {
  using value_type = Key;
  using slot_type = typename set_params::common_params::slot_type;

  template <typename V>
  static const V &key(const V &value) {
    return value;
  }
  static const Key &key(const slot_type *slot) { return *slot; }
  static const Key &key(slot_type *slot) { return *slot; }
};

}  // namespace container_internal

ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_CONTAINER_BTREE_SET_H_