summaryrefslogtreecommitdiff
path: root/absl/base/internal/exponential_biased_test.cc
blob: af003239f8de929007f8d8656ecfdd2a21dfdf95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/base/internal/exponential_biased.h"

#include <stddef.h>

#include <cmath>
#include <cstdint>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"

using ::testing::Ge;

namespace absl {
namespace base_internal {

MATCHER_P2(IsBetween, a, b,
           absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a,
                        " and ", b)) {
  return a <= arg && arg <= b;
}

// Tests of the quality of the random numbers generated
// This uses the Anderson Darling test for uniformity.
// See "Evaluating the Anderson-Darling Distribution" by Marsaglia
// for details.

// Short cut version of ADinf(z), z>0 (from Marsaglia)
// This returns the p-value for Anderson Darling statistic in
// the limit as n-> infinity. For finite n, apply the error fix below.
double AndersonDarlingInf(double z) {
  if (z < 2) {
    return exp(-1.2337141 / z) / sqrt(z) *
           (2.00012 +
            (0.247105 -
             (0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) *
                 z) *
                z);
  }
  return exp(
      -exp(1.0776 -
           (2.30695 -
            (0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) *
               z));
}

// Corrects the approximation error in AndersonDarlingInf for small values of n
// Add this to AndersonDarlingInf to get a better approximation
// (from Marsaglia)
double AndersonDarlingErrFix(int n, double x) {
  if (x > 0.8) {
    return (-130.2137 +
            (745.2337 -
             (1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) *
                x) /
           n;
  }
  double cutoff = 0.01265 + 0.1757 / n;
  if (x < cutoff) {
    double t = x / cutoff;
    t = sqrt(t) * (1 - t) * (49 * t - 102);
    return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n;
  } else {
    double t = (x - cutoff) / (0.8 - cutoff);
    t = -0.00022633 +
        (6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) *
            t;
    return t * (0.04213 + 0.01365 / n) / n;
  }
}

// Returns the AndersonDarling p-value given n and the value of the statistic
double AndersonDarlingPValue(int n, double z) {
  double ad = AndersonDarlingInf(z);
  double errfix = AndersonDarlingErrFix(n, ad);
  return ad + errfix;
}

double AndersonDarlingStatistic(const std::vector<double>& random_sample) {
  int n = random_sample.size();
  double ad_sum = 0;
  for (int i = 0; i < n; i++) {
    ad_sum += (2 * i + 1) *
              std::log(random_sample[i] * (1 - random_sample[n - 1 - i]));
  }
  double ad_statistic = -n - 1 / static_cast<double>(n) * ad_sum;
  return ad_statistic;
}

// Tests if the array of doubles is uniformly distributed.
// Returns the p-value of the Anderson Darling Statistic
// for the given set of sorted random doubles
// See "Evaluating the Anderson-Darling Distribution" by
// Marsaglia and Marsaglia for details.
double AndersonDarlingTest(const std::vector<double>& random_sample) {
  double ad_statistic = AndersonDarlingStatistic(random_sample);
  double p = AndersonDarlingPValue(random_sample.size(), ad_statistic);
  return p;
}

TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) {
  ExponentialBiased eb;
  for (int runs = 0; runs < 10; ++runs) {
    for (int flips = eb.GetSkipCount(1); flips > 0; --flips) {
      printf("head...");
    }
    printf("tail\n");
  }
  int heads = 0;
  for (int i = 0; i < 10000000; i += 1 + eb.GetSkipCount(1)) {
    ++heads;
  }
  printf("Heads = %d (%f%%)\n", heads, 100.0 * heads / 10000000);
}

TEST(ExponentialBiasedTest, SampleDemoWithStride) {
  ExponentialBiased eb;
  int stride = eb.GetStride(10);
  int samples = 0;
  for (int i = 0; i < 10000000; ++i) {
    if (--stride == 0) {
      ++samples;
      stride = eb.GetStride(10);
    }
  }
  printf("Samples = %d (%f%%)\n", samples, 100.0 * samples / 10000000);
}


// Testing that NextRandom generates uniform random numbers. Applies the
// Anderson-Darling test for uniformity
TEST(ExponentialBiasedTest, TestNextRandom) {
  for (auto n : std::vector<int>({
           10,  // Check short-range correlation
           100, 1000,
           10000  // Make sure there's no systemic error
       })) {
    uint64_t x = 1;
    // This assumes that the prng returns 48 bit numbers
    uint64_t max_prng_value = static_cast<uint64_t>(1) << 48;
    // Initialize.
    for (int i = 1; i <= 20; i++) {
      x = ExponentialBiased::NextRandom(x);
    }
    std::vector<uint64_t> int_random_sample(n);
    // Collect samples
    for (int i = 0; i < n; i++) {
      int_random_sample[i] = x;
      x = ExponentialBiased::NextRandom(x);
    }
    // First sort them...
    std::sort(int_random_sample.begin(), int_random_sample.end());
    std::vector<double> random_sample(n);
    // Convert them to uniform randoms (in the range [0,1])
    for (int i = 0; i < n; i++) {
      random_sample[i] =
          static_cast<double>(int_random_sample[i]) / max_prng_value;
    }
    // Now compute the Anderson-Darling statistic
    double ad_pvalue = AndersonDarlingTest(random_sample);
    EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001)
        << "prng is not uniform: n = " << n << " p = " << ad_pvalue;
  }
}

// The generator needs to be available as a thread_local and as a static
// variable.
TEST(ExponentialBiasedTest, InitializationModes) {
  ABSL_CONST_INIT static ExponentialBiased eb_static;
  EXPECT_THAT(eb_static.GetSkipCount(2), Ge(0));

#if ABSL_HAVE_THREAD_LOCAL
  thread_local ExponentialBiased eb_thread;
  EXPECT_THAT(eb_thread.GetSkipCount(2), Ge(0));
#endif

  ExponentialBiased eb_stack;
  EXPECT_THAT(eb_stack.GetSkipCount(2), Ge(0));
}

}  // namespace base_internal
}  // namespace absl