summaryrefslogtreecommitdiff
path: root/absl/base/internal/exception_safety_testing.h
blob: bec3ab30460b5e79a3a6f5a811f4d114ac222a00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Utilities for testing exception-safety

#ifndef ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_
#define ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_

#include <cstddef>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <iosfwd>
#include <string>
#include <tuple>
#include <unordered_map>

#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/base/internal/pretty_function.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
#include "absl/strings/substitute.h"
#include "absl/types/optional.h"

namespace testing {

enum class TypeSpec;
enum class AllocSpec;

constexpr TypeSpec operator|(TypeSpec a, TypeSpec b) {
  using T = absl::underlying_type_t<TypeSpec>;
  return static_cast<TypeSpec>(static_cast<T>(a) | static_cast<T>(b));
}

constexpr TypeSpec operator&(TypeSpec a, TypeSpec b) {
  using T = absl::underlying_type_t<TypeSpec>;
  return static_cast<TypeSpec>(static_cast<T>(a) & static_cast<T>(b));
}

constexpr AllocSpec operator|(AllocSpec a, AllocSpec b) {
  using T = absl::underlying_type_t<AllocSpec>;
  return static_cast<AllocSpec>(static_cast<T>(a) | static_cast<T>(b));
}

constexpr AllocSpec operator&(AllocSpec a, AllocSpec b) {
  using T = absl::underlying_type_t<AllocSpec>;
  return static_cast<AllocSpec>(static_cast<T>(a) & static_cast<T>(b));
}

namespace exceptions_internal {

struct NoThrowTag {};
struct StrongGuaranteeTagType {};

// A simple exception class.  We throw this so that test code can catch
// exceptions specifically thrown by ThrowingValue.
class TestException {
 public:
  explicit TestException(absl::string_view msg) : msg_(msg) {}
  virtual ~TestException() {}
  virtual const char* what() const noexcept { return msg_.c_str(); }

 private:
  std::string msg_;
};

// TestBadAllocException exists because allocation functions must throw an
// exception which can be caught by a handler of std::bad_alloc.  We use a child
// class of std::bad_alloc so we can customise the error message, and also
// derive from TestException so we don't accidentally end up catching an actual
// bad_alloc exception in TestExceptionSafety.
class TestBadAllocException : public std::bad_alloc, public TestException {
 public:
  explicit TestBadAllocException(absl::string_view msg) : TestException(msg) {}
  using TestException::what;
};

extern int countdown;

// Allows the countdown variable to be set manually (defaulting to the initial
// value of 0)
inline void SetCountdown(int i = 0) { countdown = i; }
// Sets the countdown to the terminal value -1
inline void UnsetCountdown() { SetCountdown(-1); }

void MaybeThrow(absl::string_view msg, bool throw_bad_alloc = false);

testing::AssertionResult FailureMessage(const TestException& e,
                                        int countdown) noexcept;

class ConstructorTracker;

class TrackedObject {
 public:
  TrackedObject(const TrackedObject&) = delete;
  TrackedObject(TrackedObject&&) = delete;

 protected:
  explicit TrackedObject(const char* child_ctor) {
    if (!GetInstanceMap().emplace(this, child_ctor).second) {
      ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
                    << " re-constructed in ctor " << child_ctor;
    }
  }

  ~TrackedObject() noexcept {
    if (GetInstanceMap().erase(this) == 0) {
      ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
                    << " destroyed improperly";
    }
  }

 private:
  using InstanceMap = std::unordered_map<TrackedObject*, absl::string_view>;
  static InstanceMap& GetInstanceMap() {
    static auto* instance_map = new InstanceMap();
    return *instance_map;
  }

  friend class ConstructorTracker;
};

// Inspects the constructions and destructions of anything inheriting from
// TrackedObject. This allows us to safely "leak" TrackedObjects, as
// ConstructorTracker will destroy everything left over in its destructor.
class ConstructorTracker {
 public:
  explicit ConstructorTracker(int c)
      : init_count_(c), init_instances_(TrackedObject::GetInstanceMap()) {}
  ~ConstructorTracker() {
    auto& cur_instances = TrackedObject::GetInstanceMap();
    for (auto it = cur_instances.begin(); it != cur_instances.end();) {
      if (init_instances_.count(it->first) == 0) {
        ADD_FAILURE() << "Object at address " << static_cast<void*>(it->first)
                      << " constructed from " << it->second
                      << " where the exception countdown was set to "
                      << init_count_ << " was not destroyed";
        // Erasing an item inside an unordered_map invalidates the existing
        // iterator. A new one is returned for iteration to continue.
        it = cur_instances.erase(it);
      } else {
        ++it;
      }
    }
  }

 private:
  int init_count_;
  TrackedObject::InstanceMap init_instances_;
};

template <typename Factory, typename Operation, typename Invariant>
absl::optional<testing::AssertionResult> TestSingleInvariantAtCountdownImpl(
    const Factory& factory, Operation operation, int count,
    const Invariant& invariant) {
  auto t_ptr = factory();
  absl::optional<testing::AssertionResult> current_res;
  SetCountdown(count);
  try {
    operation(t_ptr.get());
  } catch (const exceptions_internal::TestException& e) {
    current_res.emplace(invariant(t_ptr.get()));
    if (!current_res.value()) {
      *current_res << e.what() << " failed invariant check";
    }
  }
  UnsetCountdown();
  return current_res;
}

template <typename Factory, typename Operation>
absl::optional<testing::AssertionResult> TestSingleInvariantAtCountdownImpl(
    const Factory& factory, const Operation& operation, int count,
    StrongGuaranteeTagType) {
  using TPtr = typename decltype(factory())::pointer;
  auto t_is_strong = [&](TPtr t) { return *t == *factory(); };
  return TestSingleInvariantAtCountdownImpl(factory, operation, count,
                                            t_is_strong);
}

template <typename Factory, typename Operation, typename Invariant>
int TestSingleInvariantAtCountdown(
    const Factory& factory, const Operation& operation, int count,
    const Invariant& invariant,
    absl::optional<testing::AssertionResult>* reduced_res) {
  // If reduced_res is empty, it means the current call to
  // TestSingleInvariantAtCountdown(...) is the first test being run so we do
  // want to run it. Alternatively, if it's not empty (meaning a previous test
  // has run) we want to check if it passed. If the previous test did pass, we
  // want to contine running tests so we do want to run the current one. If it
  // failed, we want to short circuit so as not to overwrite the AssertionResult
  // output. If that's the case, we do not run the current test and instead we
  // simply return.
  if (!reduced_res->has_value() || reduced_res->value()) {
    *reduced_res = TestSingleInvariantAtCountdownImpl(factory, operation, count,
                                                      invariant);
  }
  return 0;
}

template <typename Factory, typename Operation, typename... Invariants>
inline absl::optional<testing::AssertionResult> TestAllInvariantsAtCountdown(
    const Factory& factory, const Operation& operation, int count,
    const Invariants&... invariants) {
  absl::optional<testing::AssertionResult> reduced_res;

  // Run each checker, short circuiting after the first failure
  int dummy[] = {
      0, (TestSingleInvariantAtCountdown(factory, operation, count, invariants,
                                         &reduced_res))...};
  static_cast<void>(dummy);
  return reduced_res;
}

}  // namespace exceptions_internal

extern exceptions_internal::NoThrowTag no_throw_ctor;
extern exceptions_internal::StrongGuaranteeTagType strong_guarantee;

// A test class which is convertible to bool.  The conversion can be
// instrumented to throw at a controlled time.
class ThrowingBool {
 public:
  ThrowingBool(bool b) noexcept : b_(b) {}  // NOLINT(runtime/explicit)
  operator bool() const {                   // NOLINT
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return b_;
  }

 private:
  bool b_;
};

/*
 * Configuration enum for the ThrowingValue type that defines behavior for the
 * lifetime of the instance. Use testing::no_throw_ctor to prevent the integer
 * constructor from throwing.
 *
 * kEverythingThrows: Every operation can throw an exception
 * kNoThrowCopy: Copy construction and copy assignment will not throw
 * kNoThrowMove: Move construction and move assignment will not throw
 * kNoThrowNew: Overloaded operators new and new[] will not throw
 */
enum class TypeSpec {
  kEverythingThrows = 0,
  kNoThrowCopy = 1,
  kNoThrowMove = 1 << 1,
  kNoThrowNew = 1 << 2,
};

/*
 * A testing class instrumented to throw an exception at a controlled time.
 *
 * ThrowingValue implements a slightly relaxed version of the Regular concept --
 * that is it's a value type with the expected semantics.  It also implements
 * arithmetic operations.  It doesn't implement member and pointer operators
 * like operator-> or operator[].
 *
 * ThrowingValue can be instrumented to have certain operations be noexcept by
 * using compile-time bitfield template arguments.  That is, to make an
 * ThrowingValue which has noexcept move construction/assignment and noexcept
 * copy construction/assignment, use the following:
 *   ThrowingValue<testing::kNoThrowMove | testing::kNoThrowCopy> my_thrwr{val};
 */
template <TypeSpec Spec = TypeSpec::kEverythingThrows>
class ThrowingValue : private exceptions_internal::TrackedObject {
  static constexpr bool IsSpecified(TypeSpec spec) {
    return static_cast<bool>(Spec & spec);
  }

  static constexpr int kBadValue = 938550620;

 public:
  ThrowingValue() : TrackedObject(ABSL_PRETTY_FUNCTION) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ = 0;
  }

  ThrowingValue(const ThrowingValue& other) noexcept(
      IsSpecified(TypeSpec::kNoThrowCopy))
      : TrackedObject(ABSL_PRETTY_FUNCTION) {
    if (!IsSpecified(TypeSpec::kNoThrowCopy)) {
      exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    }
    dummy_ = other.dummy_;
  }

  ThrowingValue(ThrowingValue&& other) noexcept(
      IsSpecified(TypeSpec::kNoThrowMove))
      : TrackedObject(ABSL_PRETTY_FUNCTION) {
    if (!IsSpecified(TypeSpec::kNoThrowMove)) {
      exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    }
    dummy_ = other.dummy_;
  }

  explicit ThrowingValue(int i) : TrackedObject(ABSL_PRETTY_FUNCTION) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ = i;
  }

  ThrowingValue(int i, exceptions_internal::NoThrowTag) noexcept
      : TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(i) {}

  // absl expects nothrow destructors
  ~ThrowingValue() noexcept = default;

  ThrowingValue& operator=(const ThrowingValue& other) noexcept(
      IsSpecified(TypeSpec::kNoThrowCopy)) {
    dummy_ = kBadValue;
    if (!IsSpecified(TypeSpec::kNoThrowCopy)) {
      exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    }
    dummy_ = other.dummy_;
    return *this;
  }

  ThrowingValue& operator=(ThrowingValue&& other) noexcept(
      IsSpecified(TypeSpec::kNoThrowMove)) {
    dummy_ = kBadValue;
    if (!IsSpecified(TypeSpec::kNoThrowMove)) {
      exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    }
    dummy_ = other.dummy_;
    return *this;
  }

  // Arithmetic Operators
  ThrowingValue operator+(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ + other.dummy_, no_throw_ctor);
  }

  ThrowingValue operator+() const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_, no_throw_ctor);
  }

  ThrowingValue operator-(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ - other.dummy_, no_throw_ctor);
  }

  ThrowingValue operator-() const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(-dummy_, no_throw_ctor);
  }

  ThrowingValue& operator++() {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    ++dummy_;
    return *this;
  }

  ThrowingValue operator++(int) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    auto out = ThrowingValue(dummy_, no_throw_ctor);
    ++dummy_;
    return out;
  }

  ThrowingValue& operator--() {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    --dummy_;
    return *this;
  }

  ThrowingValue operator--(int) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    auto out = ThrowingValue(dummy_, no_throw_ctor);
    --dummy_;
    return out;
  }

  ThrowingValue operator*(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ * other.dummy_, no_throw_ctor);
  }

  ThrowingValue operator/(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ / other.dummy_, no_throw_ctor);
  }

  ThrowingValue operator%(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ % other.dummy_, no_throw_ctor);
  }

  ThrowingValue operator<<(int shift) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ << shift, no_throw_ctor);
  }

  ThrowingValue operator>>(int shift) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ >> shift, no_throw_ctor);
  }

  // Comparison Operators
  // NOTE: We use `ThrowingBool` instead of `bool` because most STL
  // types/containers requires T to be convertible to bool.
  friend ThrowingBool operator==(const ThrowingValue& a,
                                 const ThrowingValue& b) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return a.dummy_ == b.dummy_;
  }
  friend ThrowingBool operator!=(const ThrowingValue& a,
                                 const ThrowingValue& b) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return a.dummy_ != b.dummy_;
  }
  friend ThrowingBool operator<(const ThrowingValue& a,
                                const ThrowingValue& b) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return a.dummy_ < b.dummy_;
  }
  friend ThrowingBool operator<=(const ThrowingValue& a,
                                 const ThrowingValue& b) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return a.dummy_ <= b.dummy_;
  }
  friend ThrowingBool operator>(const ThrowingValue& a,
                                const ThrowingValue& b) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return a.dummy_ > b.dummy_;
  }
  friend ThrowingBool operator>=(const ThrowingValue& a,
                                 const ThrowingValue& b) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return a.dummy_ >= b.dummy_;
  }

  // Logical Operators
  ThrowingBool operator!() const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return !dummy_;
  }

  ThrowingBool operator&&(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return dummy_ && other.dummy_;
  }

  ThrowingBool operator||(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return dummy_ || other.dummy_;
  }

  // Bitwise Logical Operators
  ThrowingValue operator~() const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(~dummy_, no_throw_ctor);
  }

  ThrowingValue operator&(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ & other.dummy_, no_throw_ctor);
  }

  ThrowingValue operator|(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ | other.dummy_, no_throw_ctor);
  }

  ThrowingValue operator^(const ThrowingValue& other) const {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return ThrowingValue(dummy_ ^ other.dummy_, no_throw_ctor);
  }

  // Compound Assignment operators
  ThrowingValue& operator+=(const ThrowingValue& other) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ += other.dummy_;
    return *this;
  }

  ThrowingValue& operator-=(const ThrowingValue& other) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ -= other.dummy_;
    return *this;
  }

  ThrowingValue& operator*=(const ThrowingValue& other) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ *= other.dummy_;
    return *this;
  }

  ThrowingValue& operator/=(const ThrowingValue& other) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ /= other.dummy_;
    return *this;
  }

  ThrowingValue& operator%=(const ThrowingValue& other) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ %= other.dummy_;
    return *this;
  }

  ThrowingValue& operator&=(const ThrowingValue& other) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ &= other.dummy_;
    return *this;
  }

  ThrowingValue& operator|=(const ThrowingValue& other) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ |= other.dummy_;
    return *this;
  }

  ThrowingValue& operator^=(const ThrowingValue& other) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ ^= other.dummy_;
    return *this;
  }

  ThrowingValue& operator<<=(int shift) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ <<= shift;
    return *this;
  }

  ThrowingValue& operator>>=(int shift) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ >>= shift;
    return *this;
  }

  // Pointer operators
  void operator&() const = delete;  // NOLINT(runtime/operator)

  // Stream operators
  friend std::ostream& operator<<(std::ostream& os, const ThrowingValue&) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return os;
  }

  friend std::istream& operator>>(std::istream& is, const ThrowingValue&) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    return is;
  }

  // Memory management operators
  // Args.. allows us to overload regular and placement new in one shot
  template <typename... Args>
  static void* operator new(size_t s, Args&&... args) noexcept(
      IsSpecified(TypeSpec::kNoThrowNew)) {
    if (!IsSpecified(TypeSpec::kNoThrowNew)) {
      exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
    }
    return ::operator new(s, std::forward<Args>(args)...);
  }

  template <typename... Args>
  static void* operator new[](size_t s, Args&&... args) noexcept(
      IsSpecified(TypeSpec::kNoThrowNew)) {
    if (!IsSpecified(TypeSpec::kNoThrowNew)) {
      exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
    }
    return ::operator new[](s, std::forward<Args>(args)...);
  }

  // Abseil doesn't support throwing overloaded operator delete.  These are
  // provided so a throwing operator-new can clean up after itself.
  //
  // We provide both regular and templated operator delete because if only the
  // templated version is provided as we did with operator new, the compiler has
  // no way of knowing which overload of operator delete to call. See
  // http://en.cppreference.com/w/cpp/memory/new/operator_delete and
  // http://en.cppreference.com/w/cpp/language/delete for the gory details.
  void operator delete(void* p) noexcept { ::operator delete(p); }

  template <typename... Args>
  void operator delete(void* p, Args&&... args) noexcept {
    ::operator delete(p, std::forward<Args>(args)...);
  }

  void operator delete[](void* p) noexcept { return ::operator delete[](p); }

  template <typename... Args>
  void operator delete[](void* p, Args&&... args) noexcept {
    return ::operator delete[](p, std::forward<Args>(args)...);
  }

  // Non-standard access to the actual contained value.  No need for this to
  // throw.
  int& Get() noexcept { return dummy_; }
  const int& Get() const noexcept { return dummy_; }

 private:
  int dummy_;
};
// While not having to do with exceptions, explicitly delete comma operator, to
// make sure we don't use it on user-supplied types.
template <TypeSpec Spec, typename T>
void operator,(const ThrowingValue<Spec>&, T&&) = delete;
template <TypeSpec Spec, typename T>
void operator,(T&&, const ThrowingValue<Spec>&) = delete;

/*
 * Configuration enum for the ThrowingAllocator type that defines behavior for
 * the lifetime of the instance.
 *
 * kEverythingThrows: Calls to the member functions may throw
 * kNoThrowAllocate: Calls to the member functions will not throw
 */
enum class AllocSpec {
  kEverythingThrows = 0,
  kNoThrowAllocate = 1,
};

/*
 * An allocator type which is instrumented to throw at a controlled time, or not
 * to throw, using AllocSpec. The supported settings are the default of every
 * function which is allowed to throw in a conforming allocator possibly
 * throwing, or nothing throws, in line with the ABSL_ALLOCATOR_THROWS
 * configuration macro.
 */
template <typename T, AllocSpec Spec = AllocSpec::kEverythingThrows>
class ThrowingAllocator : private exceptions_internal::TrackedObject {
  static constexpr bool IsSpecified(AllocSpec spec) {
    return static_cast<bool>(Spec & spec);
  }

 public:
  using pointer = T*;
  using const_pointer = const T*;
  using reference = T&;
  using const_reference = const T&;
  using void_pointer = void*;
  using const_void_pointer = const void*;
  using value_type = T;
  using size_type = size_t;
  using difference_type = ptrdiff_t;

  using is_nothrow =
      std::integral_constant<bool, Spec == AllocSpec::kNoThrowAllocate>;
  using propagate_on_container_copy_assignment = std::true_type;
  using propagate_on_container_move_assignment = std::true_type;
  using propagate_on_container_swap = std::true_type;
  using is_always_equal = std::false_type;

  ThrowingAllocator() : TrackedObject(ABSL_PRETTY_FUNCTION) {
    exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
    dummy_ = std::make_shared<const int>(next_id_++);
  }

  template <typename U>
  ThrowingAllocator(const ThrowingAllocator<U, Spec>& other) noexcept  // NOLINT
      : TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {}

  // According to C++11 standard [17.6.3.5], Table 28, the move/copy ctors of
  // allocator shall not exit via an exception, thus they are marked noexcept.
  ThrowingAllocator(const ThrowingAllocator& other) noexcept
      : TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {}

  template <typename U>
  ThrowingAllocator(ThrowingAllocator<U, Spec>&& other) noexcept  // NOLINT
      : TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {}

  ThrowingAllocator(ThrowingAllocator&& other) noexcept
      : TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {}

  ~ThrowingAllocator() noexcept = default;

  ThrowingAllocator& operator=(const ThrowingAllocator& other) noexcept {
    dummy_ = other.State();
    return *this;
  }

  template <typename U>
  ThrowingAllocator& operator=(
      const ThrowingAllocator<U, Spec>& other) noexcept {
    dummy_ = other.State();
    return *this;
  }

  template <typename U>
  ThrowingAllocator& operator=(ThrowingAllocator<U, Spec>&& other) noexcept {
    dummy_ = std::move(other.State());
    return *this;
  }

  template <typename U>
  struct rebind {
    using other = ThrowingAllocator<U, Spec>;
  };

  pointer allocate(size_type n) noexcept(
      IsSpecified(AllocSpec::kNoThrowAllocate)) {
    ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
    return static_cast<pointer>(::operator new(n * sizeof(T)));
  }

  pointer allocate(size_type n, const_void_pointer) noexcept(
      IsSpecified(AllocSpec::kNoThrowAllocate)) {
    return allocate(n);
  }

  void deallocate(pointer ptr, size_type) noexcept {
    ReadState();
    ::operator delete(static_cast<void*>(ptr));
  }

  template <typename U, typename... Args>
  void construct(U* ptr, Args&&... args) noexcept(
      IsSpecified(AllocSpec::kNoThrowAllocate)) {
    ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
    ::new (static_cast<void*>(ptr)) U(std::forward<Args>(args)...);
  }

  template <typename U>
  void destroy(U* p) noexcept {
    ReadState();
    p->~U();
  }

  size_type max_size() const noexcept {
    return std::numeric_limits<difference_type>::max() / sizeof(value_type);
  }

  ThrowingAllocator select_on_container_copy_construction() noexcept(
      IsSpecified(AllocSpec::kNoThrowAllocate)) {
    auto& out = *this;
    ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
    return out;
  }

  template <typename U>
  bool operator==(const ThrowingAllocator<U, Spec>& other) const noexcept {
    return dummy_ == other.dummy_;
  }

  template <typename U>
  bool operator!=(const ThrowingAllocator<U, Spec>& other) const noexcept {
    return dummy_ != other.dummy_;
  }

  template <typename, AllocSpec>
  friend class ThrowingAllocator;

 private:
  const std::shared_ptr<const int>& State() const { return dummy_; }
  std::shared_ptr<const int>& State() { return dummy_; }

  void ReadState() {
    // we know that this will never be true, but the compiler doesn't, so this
    // should safely force a read of the value.
    if (*dummy_ < 0) std::abort();
  }

  void ReadStateAndMaybeThrow(absl::string_view msg) const {
    if (!IsSpecified(AllocSpec::kNoThrowAllocate)) {
      exceptions_internal::MaybeThrow(
          absl::Substitute("Allocator id $0 threw from $1", *dummy_, msg));
    }
  }

  static int next_id_;
  std::shared_ptr<const int> dummy_;
};

template <typename T, AllocSpec Spec>
int ThrowingAllocator<T, Spec>::next_id_ = 0;

// Tests for resource leaks by attempting to construct a T using args repeatedly
// until successful, using the countdown method.  Side effects can then be
// tested for resource leaks.
template <typename T, typename... Args>
void TestThrowingCtor(Args&&... args) {
  struct Cleanup {
    ~Cleanup() { exceptions_internal::UnsetCountdown(); }
  } c;
  for (int count = 0;; ++count) {
    exceptions_internal::ConstructorTracker ct(count);
    exceptions_internal::SetCountdown(count);
    try {
      T temp(std::forward<Args>(args)...);
      static_cast<void>(temp);
      break;
    } catch (const exceptions_internal::TestException&) {
    }
  }
}

namespace exceptions_internal {

// Dummy struct for ExceptionSafetyTester<> partial state.
struct UninitializedT {};

template <typename T>
class DefaultFactory {
 public:
  explicit DefaultFactory(const T& t) : t_(t) {}
  std::unique_ptr<T> operator()() const { return absl::make_unique<T>(t_); }

 private:
  T t_;
};

template <size_t LazyInvariantsCount, typename LazyFactory,
          typename LazyOperation>
using EnableIfTestable = typename absl::enable_if_t<
    LazyInvariantsCount != 0 &&
    !std::is_same<LazyFactory, UninitializedT>::value &&
    !std::is_same<LazyOperation, UninitializedT>::value>;

template <typename Factory = UninitializedT,
          typename Operation = UninitializedT, typename... Invariants>
class ExceptionSafetyTester;

}  // namespace exceptions_internal

exceptions_internal::ExceptionSafetyTester<> MakeExceptionSafetyTester();

namespace exceptions_internal {

/*
 * Builds a tester object that tests if performing a operation on a T follows
 * exception safety guarantees. Verification is done via invariant assertion
 * callbacks applied to T instances post-throw.
 *
 * Template parameters for ExceptionSafetyTester:
 *
 * - Factory: The factory object (passed in via tester.WithFactory(...) or
 *   tester.WithInitialValue(...)) must be invocable with the signature
 *   `std::unique_ptr<T> operator()() const` where T is the type being tested.
 *   It is used for reliably creating identical T instances to test on.
 *
 * - Operation: The operation object (passsed in via tester.WithOperation(...)
 *   or tester.Test(...)) must be invocable with the signature
 *   `void operator()(T*) const` where T is the type being tested. It is used
 *   for performing steps on a T instance that may throw and that need to be
 *   checked for exception safety. Each call to the operation will receive a
 *   fresh T instance so it's free to modify and destroy the T instances as it
 *   pleases.
 *
 * - Invariants...: The invariant assertion callback objects (passed in via
 *   tester.WithInvariants(...)) must be invocable with the signature
 *   `testing::AssertionResult operator()(T*) const` where T is the type being
 *   tested. Invariant assertion callbacks are provided T instances post-throw.
 *   They must return testing::AssertionSuccess when the type invariants of the
 *   provided T instance hold. If the type invariants of the T instance do not
 *   hold, they must return testing::AssertionFailure. Execution order of
 *   Invariants... is unspecified. They will each individually get a fresh T
 *   instance so they are free to modify and destroy the T instances as they
 *   please.
 */
template <typename Factory, typename Operation, typename... Invariants>
class ExceptionSafetyTester {
 public:
  /*
   * Returns a new ExceptionSafetyTester with an included T factory based on the
   * provided T instance. The existing factory will not be included in the newly
   * created tester instance. The created factory returns a new T instance by
   * copy-constructing the provided const T& t.
   *
   * Preconditions for tester.WithInitialValue(const T& t):
   *
   * - The const T& t object must be copy-constructible where T is the type
   *   being tested. For non-copy-constructible objects, use the method
   *   tester.WithFactory(...).
   */
  template <typename T>
  ExceptionSafetyTester<DefaultFactory<T>, Operation, Invariants...>
  WithInitialValue(const T& t) const {
    return WithFactory(DefaultFactory<T>(t));
  }

  /*
   * Returns a new ExceptionSafetyTester with the provided T factory included.
   * The existing factory will not be included in the newly-created tester
   * instance. This method is intended for use with types lacking a copy
   * constructor. Types that can be copy-constructed should instead use the
   * method tester.WithInitialValue(...).
   */
  template <typename NewFactory>
  ExceptionSafetyTester<absl::decay_t<NewFactory>, Operation, Invariants...>
  WithFactory(const NewFactory& new_factory) const {
    return {new_factory, operation_, invariants_};
  }

  /*
   * Returns a new ExceptionSafetyTester with the provided testable operation
   * included. The existing operation will not be included in the newly created
   * tester.
   */
  template <typename NewOperation>
  ExceptionSafetyTester<Factory, absl::decay_t<NewOperation>, Invariants...>
  WithOperation(const NewOperation& new_operation) const {
    return {factory_, new_operation, invariants_};
  }

  /*
   * Returns a new ExceptionSafetyTester with the provided MoreInvariants...
   * combined with the Invariants... that were already included in the instance
   * on which the method was called. Invariants... cannot be removed or replaced
   * once added to an ExceptionSafetyTester instance. A fresh object must be
   * created in order to get an empty Invariants... list.
   *
   * In addition to passing in custom invariant assertion callbacks, this method
   * accepts `testing::strong_guarantee` as an argument which checks T instances
   * post-throw against freshly created T instances via operator== to verify
   * that any state changes made during the execution of the operation were
   * properly rolled back.
   */
  template <typename... MoreInvariants>
  ExceptionSafetyTester<Factory, Operation, Invariants...,
                        absl::decay_t<MoreInvariants>...>
  WithInvariants(const MoreInvariants&... more_invariants) const {
    return {factory_, operation_,
            std::tuple_cat(invariants_,
                           std::tuple<absl::decay_t<MoreInvariants>...>(
                               more_invariants...))};
  }

  /*
   * Returns a testing::AssertionResult that is the reduced result of the
   * exception safety algorithm. The algorithm short circuits and returns
   * AssertionFailure after the first invariant callback returns an
   * AssertionFailure. Otherwise, if all invariant callbacks return an
   * AssertionSuccess, the reduced result is AssertionSuccess.
   *
   * The passed-in testable operation will not be saved in a new tester instance
   * nor will it modify/replace the existing tester instance. This is useful
   * when each operation being tested is unique and does not need to be reused.
   *
   * Preconditions for tester.Test(const NewOperation& new_operation):
   *
   * - May only be called after at least one invariant assertion callback and a
   *   factory or initial value have been provided.
   */
  template <
      typename NewOperation,
      typename = EnableIfTestable<sizeof...(Invariants), Factory, NewOperation>>
  testing::AssertionResult Test(const NewOperation& new_operation) const {
    return TestImpl(new_operation, absl::index_sequence_for<Invariants...>());
  }

  /*
   * Returns a testing::AssertionResult that is the reduced result of the
   * exception safety algorithm. The algorithm short circuits and returns
   * AssertionFailure after the first invariant callback returns an
   * AssertionFailure. Otherwise, if all invariant callbacks return an
   * AssertionSuccess, the reduced result is AssertionSuccess.
   *
   * Preconditions for tester.Test():
   *
   * - May only be called after at least one invariant assertion callback, a
   *   factory or initial value and a testable operation have been provided.
   */
  template <typename LazyOperation = Operation,
            typename =
                EnableIfTestable<sizeof...(Invariants), Factory, LazyOperation>>
  testing::AssertionResult Test() const {
    return TestImpl(operation_, absl::index_sequence_for<Invariants...>());
  }

 private:
  template <typename, typename, typename...>
  friend class ExceptionSafetyTester;

  friend ExceptionSafetyTester<> testing::MakeExceptionSafetyTester();

  ExceptionSafetyTester() {}

  ExceptionSafetyTester(const Factory& f, const Operation& o,
                        const std::tuple<Invariants...>& i)
      : factory_(f), operation_(o), invariants_(i) {}

  template <typename SelectedOperation, size_t... Indices>
  testing::AssertionResult TestImpl(const SelectedOperation& selected_operation,
                                    absl::index_sequence<Indices...>) const {
    // Starting from 0 and counting upwards until one of the exit conditions is
    // hit...
    for (int count = 0;; ++count) {
      exceptions_internal::ConstructorTracker ct(count);

      // Run the full exception safety test algorithm for the current countdown
      auto reduced_res =
          TestAllInvariantsAtCountdown(factory_, selected_operation, count,
                                       std::get<Indices>(invariants_)...);
      // If there is no value in the optional, no invariants were run because no
      // exception was thrown. This means that the test is complete and the loop
      // can exit successfully.
      if (!reduced_res.has_value()) {
        return testing::AssertionSuccess();
      }
      // If the optional is not empty and the value is falsy, an invariant check
      // failed so the test must exit to propegate the failure.
      if (!reduced_res.value()) {
        return reduced_res.value();
      }
      // If the optional is not empty and the value is not falsy, it means
      // exceptions were thrown but the invariants passed so the test must
      // continue to run.
    }
  }

  Factory factory_;
  Operation operation_;
  std::tuple<Invariants...> invariants_;
};

}  // namespace exceptions_internal

/*
 * Constructs an empty ExceptionSafetyTester. All ExceptionSafetyTester
 * objects are immutable and all With[thing] mutation methods return new
 * instances of ExceptionSafetyTester.
 *
 * In order to test a T for exception safety, a factory for that T, a testable
 * operation, and at least one invariant callback returning an assertion
 * result must be applied using the respective methods.
 */
inline exceptions_internal::ExceptionSafetyTester<>
MakeExceptionSafetyTester() {
  return {};
}

// Always return false, intended to be used as a checker with
// TestExceptionSafety() to check that no exception is thrown.
inline bool nothrow_guarantee(const void*) {
  return ::testing::AssertionFailure() << "Violating NoThrowGuarantee";
}

}  // namespace testing

#endif  // ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_