1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <cstring>
#include "absl/algorithm/algorithm.h"
#include "benchmark/benchmark.h"
namespace {
// The range of sequence sizes to benchmark.
constexpr int kMinBenchmarkSize = 1024;
constexpr int kMaxBenchmarkSize = 8 * 1024 * 1024;
// A user-defined type for use in equality benchmarks. Note that we expect
// std::memcmp to win for this type: libstdc++'s std::equal only defers to
// memcmp for integral types. This is because it is not straightforward to
// guarantee that std::memcmp would produce a result "as-if" compared by
// operator== for other types (example gotchas: NaN floats, structs with
// padding).
struct EightBits {
explicit EightBits(int /* unused */) : data(0) {}
bool operator==(const EightBits& rhs) const { return data == rhs.data; }
uint8_t data;
};
template <typename T>
void BM_absl_equal_benchmark(benchmark::State& state) {
std::vector<T> xs(state.range(0), T(0));
std::vector<T> ys = xs;
while (state.KeepRunning()) {
const bool same = absl::equal(xs.begin(), xs.end(), ys.begin(), ys.end());
benchmark::DoNotOptimize(same);
}
}
template <typename T>
void BM_std_equal_benchmark(benchmark::State& state) {
std::vector<T> xs(state.range(0), T(0));
std::vector<T> ys = xs;
while (state.KeepRunning()) {
const bool same = std::equal(xs.begin(), xs.end(), ys.begin());
benchmark::DoNotOptimize(same);
}
}
template <typename T>
void BM_memcmp_benchmark(benchmark::State& state) {
std::vector<T> xs(state.range(0), T(0));
std::vector<T> ys = xs;
while (state.KeepRunning()) {
const bool same =
std::memcmp(xs.data(), ys.data(), xs.size() * sizeof(T)) == 0;
benchmark::DoNotOptimize(same);
}
}
// The expectation is that the compiler should be able to elide the equality
// comparison altogether for sufficiently simple types.
template <typename T>
void BM_absl_equal_self_benchmark(benchmark::State& state) {
std::vector<T> xs(state.range(0), T(0));
while (state.KeepRunning()) {
const bool same = absl::equal(xs.begin(), xs.end(), xs.begin(), xs.end());
benchmark::DoNotOptimize(same);
}
}
BENCHMARK_TEMPLATE(BM_absl_equal_benchmark, uint8_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_std_equal_benchmark, uint8_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_memcmp_benchmark, uint8_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_absl_equal_self_benchmark, uint8_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_absl_equal_benchmark, uint16_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_std_equal_benchmark, uint16_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_memcmp_benchmark, uint16_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_absl_equal_self_benchmark, uint16_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_absl_equal_benchmark, uint32_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_std_equal_benchmark, uint32_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_memcmp_benchmark, uint32_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_absl_equal_self_benchmark, uint32_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_absl_equal_benchmark, uint64_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_std_equal_benchmark, uint64_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_memcmp_benchmark, uint64_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_absl_equal_self_benchmark, uint64_t)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_absl_equal_benchmark, EightBits)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_std_equal_benchmark, EightBits)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_memcmp_benchmark, EightBits)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
BENCHMARK_TEMPLATE(BM_absl_equal_self_benchmark, EightBits)
->Range(kMinBenchmarkSize, kMaxBenchmarkSize);
} // namespace
|