// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // The implementation of the absl::Time class, which is declared in // //absl/time.h. // // The representation for an absl::Time is an absl::Duration offset from the // epoch. We use the traditional Unix epoch (1970-01-01 00:00:00 +0000) // for convenience, but this is not exposed in the API and could be changed. // // NOTE: To keep type verbosity to a minimum, the following variable naming // conventions are used throughout this file. // // cz: A cctz::time_zone // tz: An absl::TimeZone // cl: A cctz::time_zone::civil_lookup // al: A cctz::time_zone::absolute_lookup // cd: A cctz::civil_day // cs: A cctz::civil_second // bd: An absl::Time::Breakdown #include "absl/time/time.h" #include #include #include #include "absl/time/internal/cctz/include/cctz/civil_time.h" #include "absl/time/internal/cctz/include/cctz/time_zone.h" namespace cctz = absl::time_internal::cctz; namespace absl { inline namespace lts_2018_06_20 { namespace { inline cctz::time_point unix_epoch() { return std::chrono::time_point_cast( std::chrono::system_clock::from_time_t(0)); } // Floors d to the next unit boundary closer to negative infinity. inline int64_t FloorToUnit(absl::Duration d, absl::Duration unit) { absl::Duration rem; int64_t q = absl::IDivDuration(d, unit, &rem); return (q > 0 || rem >= ZeroDuration() || q == std::numeric_limits::min()) ? q : q - 1; } inline absl::Time::Breakdown InfiniteFutureBreakdown() { absl::Time::Breakdown bd; bd.year = std::numeric_limits::max(); bd.month = 12; bd.day = 31; bd.hour = 23; bd.minute = 59; bd.second = 59; bd.subsecond = absl::InfiniteDuration(); bd.weekday = 4; bd.yearday = 365; bd.offset = 0; bd.is_dst = false; bd.zone_abbr = "-00"; return bd; } inline Time::Breakdown InfinitePastBreakdown() { Time::Breakdown bd; bd.year = std::numeric_limits::min(); bd.month = 1; bd.day = 1; bd.hour = 0; bd.minute = 0; bd.second = 0; bd.subsecond = -absl::InfiniteDuration(); bd.weekday = 7; bd.yearday = 1; bd.offset = 0; bd.is_dst = false; bd.zone_abbr = "-00"; return bd; } inline absl::TimeConversion InfiniteFutureTimeConversion() { absl::TimeConversion tc; tc.pre = tc.trans = tc.post = absl::InfiniteFuture(); tc.kind = absl::TimeConversion::UNIQUE; tc.normalized = true; return tc; } inline TimeConversion InfinitePastTimeConversion() { absl::TimeConversion tc; tc.pre = tc.trans = tc.post = absl::InfinitePast(); tc.kind = absl::TimeConversion::UNIQUE; tc.normalized = true; return tc; } // Makes a Time from sec, overflowing to InfiniteFuture/InfinitePast as // necessary. If sec is min/max, then consult cs+tz to check for overlow. Time MakeTimeWithOverflow(const cctz::time_point& sec, const cctz::civil_second& cs, const cctz::time_zone& tz, bool* normalized = nullptr) { const auto max = cctz::time_point::max(); const auto min = cctz::time_point::min(); if (sec == max) { const auto al = tz.lookup(max); if (cs > al.cs) { if (normalized) *normalized = true; return absl::InfiniteFuture(); } } if (sec == min) { const auto al = tz.lookup(min); if (cs < al.cs) { if (normalized) *normalized = true; return absl::InfinitePast(); } } const auto hi = (sec - unix_epoch()).count(); return time_internal::FromUnixDuration(time_internal::MakeDuration(hi)); } inline absl::TimeConversion::Kind MapKind( const cctz::time_zone::civil_lookup::civil_kind& kind) { switch (kind) { case cctz::time_zone::civil_lookup::UNIQUE: return absl::TimeConversion::UNIQUE; case cctz::time_zone::civil_lookup::SKIPPED: return absl::TimeConversion::SKIPPED; case cctz::time_zone::civil_lookup::REPEATED: return absl::TimeConversion::REPEATED; } return absl::TimeConversion::UNIQUE; } // Returns Mon=1..Sun=7. inline int MapWeekday(const cctz::weekday& wd) { switch (wd) { case cctz::weekday::monday: return 1; case cctz::weekday::tuesday: return 2; case cctz::weekday::wednesday: return 3; case cctz::weekday::thursday: return 4; case cctz::weekday::friday: return 5; case cctz::weekday::saturday: return 6; case cctz::weekday::sunday: return 7; } return 1; } } // namespace absl::Time::Breakdown Time::In(absl::TimeZone tz) const { if (*this == absl::InfiniteFuture()) return absl::InfiniteFutureBreakdown(); if (*this == absl::InfinitePast()) return absl::InfinitePastBreakdown(); const auto tp = unix_epoch() + cctz::sys_seconds(time_internal::GetRepHi(rep_)); const auto al = cctz::time_zone(tz).lookup(tp); const auto cs = al.cs; const auto cd = cctz::civil_day(cs); absl::Time::Breakdown bd; bd.year = cs.year(); bd.month = cs.month(); bd.day = cs.day(); bd.hour = cs.hour(); bd.minute = cs.minute(); bd.second = cs.second(); bd.subsecond = time_internal::MakeDuration(0, time_internal::GetRepLo(rep_)); bd.weekday = MapWeekday(get_weekday(cd)); bd.yearday = get_yearday(cd); bd.offset = al.offset; bd.is_dst = al.is_dst; bd.zone_abbr = al.abbr; return bd; } absl::Time FromTM(const struct tm& tm, absl::TimeZone tz) { const auto cz = cctz::time_zone(tz); const auto cs = cctz::civil_second(tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); const auto cl = cz.lookup(cs); const auto tp = tm.tm_isdst == 0 ? cl.post : cl.pre; return MakeTimeWithOverflow(tp, cs, cz); } struct tm ToTM(absl::Time t, absl::TimeZone tz) { const absl::Time::Breakdown bd = t.In(tz); struct tm tm; std::memset(&tm, 0, sizeof(tm)); tm.tm_sec = bd.second; tm.tm_min = bd.minute; tm.tm_hour = bd.hour; tm.tm_mday = bd.day; tm.tm_mon = bd.month - 1; // Saturates tm.tm_year in cases of over/underflow, accounting for the fact // that tm.tm_year is years since 1900. if (bd.year < std::numeric_limits::min() + 1900) { tm.tm_year = std::numeric_limits::min(); } else if (bd.year > std::numeric_limits::max()) { tm.tm_year = std::numeric_limits::max() - 1900; } else { tm.tm_year = static_cast(bd.year - 1900); } tm.tm_wday = bd.weekday % 7; tm.tm_yday = bd.yearday - 1; tm.tm_isdst = bd.is_dst ? 1 : 0; return tm; } // // Factory functions. // absl::TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour, int min, int sec, TimeZone tz) { // Avoids years that are too extreme for civil_second to normalize. if (year > 300000000000) return InfiniteFutureTimeConversion(); if (year < -300000000000) return InfinitePastTimeConversion(); const auto cz = cctz::time_zone(tz); const auto cs = cctz::civil_second(year, mon, day, hour, min, sec); absl::TimeConversion tc; tc.normalized = year != cs.year() || mon != cs.month() || day != cs.day() || hour != cs.hour() || min != cs.minute() || sec != cs.second(); const auto cl = cz.lookup(cs); // Converts the civil_lookup struct to a TimeConversion. tc.pre = MakeTimeWithOverflow(cl.pre, cs, cz, &tc.normalized); tc.trans = MakeTimeWithOverflow(cl.trans, cs, cz, &tc.normalized); tc.post = MakeTimeWithOverflow(cl.post, cs, cz, &tc.normalized); tc.kind = MapKind(cl.kind); return tc; } absl::Time FromDateTime(int64_t year, int mon, int day, int hour, int min, int sec, TimeZone tz) { if (year > 300000000000) return InfiniteFuture(); if (year < -300000000000) return InfinitePast(); const auto cz = cctz::time_zone(tz); const auto cs = cctz::civil_second(year, mon, day, hour, min, sec); const auto cl = cz.lookup(cs); return MakeTimeWithOverflow(cl.pre, cs, cz); } absl::Time TimeFromTimespec(timespec ts) { return time_internal::FromUnixDuration(absl::DurationFromTimespec(ts)); } absl::Time TimeFromTimeval(timeval tv) { return time_internal::FromUnixDuration(absl::DurationFromTimeval(tv)); } absl::Time FromUDate(double udate) { return time_internal::FromUnixDuration(absl::Milliseconds(udate)); } absl::Time FromUniversal(int64_t universal) { return absl::UniversalEpoch() + 100 * absl::Nanoseconds(universal); } // // Conversion to other time types. // int64_t ToUnixNanos(Time t) { if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 && time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 33 == 0) { return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * 1000 * 1000 * 1000) + (time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / 4); } return FloorToUnit(time_internal::ToUnixDuration(t), absl::Nanoseconds(1)); } int64_t ToUnixMicros(Time t) { if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 && time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 43 == 0) { return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * 1000 * 1000) + (time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / 4000); } return FloorToUnit(time_internal::ToUnixDuration(t), absl::Microseconds(1)); } int64_t ToUnixMillis(Time t) { if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 && time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 53 == 0) { return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * 1000) + (time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / (4000 * 1000)); } return FloorToUnit(time_internal::ToUnixDuration(t), absl::Milliseconds(1)); } int64_t ToUnixSeconds(Time t) { return time_internal::GetRepHi(time_internal::ToUnixDuration(t)); } time_t ToTimeT(Time t) { return absl::ToTimespec(t).tv_sec; } timespec ToTimespec(Time t) { timespec ts; absl::Duration d = time_internal::ToUnixDuration(t); if (!time_internal::IsInfiniteDuration(d)) { ts.tv_sec = time_internal::GetRepHi(d); if (ts.tv_sec == time_internal::GetRepHi(d)) { // no time_t narrowing ts.tv_nsec = time_internal::GetRepLo(d) / 4; // floor return ts; } } if (d >= absl::ZeroDuration()) { ts.tv_sec = std::numeric_limits::max(); ts.tv_nsec = 1000 * 1000 * 1000 - 1; } else { ts.tv_sec = std::numeric_limits::min(); ts.tv_nsec = 0; } return ts; } timeval ToTimeval(Time t) { timeval tv; timespec ts = absl::ToTimespec(t); tv.tv_sec = ts.tv_sec; if (tv.tv_sec != ts.tv_sec) { // narrowing if (ts.tv_sec < 0) { tv.tv_sec = std::numeric_limits::min(); tv.tv_usec = 0; } else { tv.tv_sec = std::numeric_limits::max(); tv.tv_usec = 1000 * 1000 - 1; } return tv; } tv.tv_usec = static_cast(ts.tv_nsec / 1000); // suseconds_t return tv; } double ToUDate(Time t) { return absl::FDivDuration(time_internal::ToUnixDuration(t), absl::Milliseconds(1)); } int64_t ToUniversal(absl::Time t) { return absl::FloorToUnit(t - absl::UniversalEpoch(), absl::Nanoseconds(100)); } Time FromChrono(const std::chrono::system_clock::time_point& tp) { return time_internal::FromUnixDuration(time_internal::FromChrono( tp - std::chrono::system_clock::from_time_t(0))); } std::chrono::system_clock::time_point ToChronoTime(absl::Time t) { using D = std::chrono::system_clock::duration; auto d = time_internal::ToUnixDuration(t); if (d < ZeroDuration()) d = Floor(d, FromChrono(D{1})); return std::chrono::system_clock::from_time_t(0) + time_internal::ToChronoDuration(d); } } // inline namespace lts_2018_06_20 } // namespace absl