// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <cstdint> #include <mutex> // NOLINT(build/c++11) #include <vector> #include "absl/base/config.h" #include "absl/base/internal/cycleclock.h" #include "absl/base/internal/spinlock.h" #include "absl/base/no_destructor.h" #include "absl/synchronization/blocking_counter.h" #include "absl/synchronization/internal/thread_pool.h" #include "absl/synchronization/mutex.h" #include "benchmark/benchmark.h" namespace { void BM_Mutex(benchmark::State& state) { static absl::NoDestructor<absl::Mutex> mu; for (auto _ : state) { absl::MutexLock lock(mu.get()); } } BENCHMARK(BM_Mutex)->UseRealTime()->Threads(1)->ThreadPerCpu(); void BM_ReaderLock(benchmark::State& state) { static absl::NoDestructor<absl::Mutex> mu; for (auto _ : state) { absl::ReaderMutexLock lock(mu.get()); } } BENCHMARK(BM_ReaderLock)->UseRealTime()->Threads(1)->ThreadPerCpu(); void BM_TryLock(benchmark::State& state) { absl::Mutex mu; for (auto _ : state) { if (mu.TryLock()) { mu.Unlock(); } } } BENCHMARK(BM_TryLock); void BM_ReaderTryLock(benchmark::State& state) { static absl::NoDestructor<absl::Mutex> mu; for (auto _ : state) { if (mu->ReaderTryLock()) { mu->ReaderUnlock(); } } } BENCHMARK(BM_ReaderTryLock)->UseRealTime()->Threads(1)->ThreadPerCpu(); static void DelayNs(int64_t ns, int* data) { int64_t end = absl::base_internal::CycleClock::Now() + ns * absl::base_internal::CycleClock::Frequency() / 1e9; while (absl::base_internal::CycleClock::Now() < end) { ++(*data); benchmark::DoNotOptimize(*data); } } template <typename MutexType> class RaiiLocker { public: explicit RaiiLocker(MutexType* mu) : mu_(mu) { mu_->Lock(); } ~RaiiLocker() { mu_->Unlock(); } private: MutexType* mu_; }; template <> class RaiiLocker<std::mutex> { public: explicit RaiiLocker(std::mutex* mu) : mu_(mu) { mu_->lock(); } ~RaiiLocker() { mu_->unlock(); } private: std::mutex* mu_; }; // RAII object to change the Mutex priority of the running thread. class ScopedThreadMutexPriority { public: explicit ScopedThreadMutexPriority(int priority) { absl::base_internal::ThreadIdentity* identity = absl::synchronization_internal::GetOrCreateCurrentThreadIdentity(); identity->per_thread_synch.priority = priority; // Bump next_priority_read_cycles to the infinite future so that the // implementation doesn't re-read the thread's actual scheduler priority // and replace our temporary scoped priority. identity->per_thread_synch.next_priority_read_cycles = std::numeric_limits<int64_t>::max(); } ~ScopedThreadMutexPriority() { // Reset the "next priority read time" back to the infinite past so that // the next time the Mutex implementation wants to know this thread's // priority, it re-reads it from the OS instead of using our overridden // priority. absl::synchronization_internal::GetOrCreateCurrentThreadIdentity() ->per_thread_synch.next_priority_read_cycles = std::numeric_limits<int64_t>::min(); } }; void BM_MutexEnqueue(benchmark::State& state) { // In the "multiple priorities" variant of the benchmark, one of the // threads runs with Mutex priority 0 while the rest run at elevated priority. // This benchmarks the performance impact of the presence of a low priority // waiter when a higher priority waiter adds itself of the queue // (b/175224064). // // NOTE: The actual scheduler priority is not modified in this benchmark: // all of the threads get CPU slices with the same priority. Only the // Mutex queueing behavior is modified. const bool multiple_priorities = state.range(0); ScopedThreadMutexPriority priority_setter( (multiple_priorities && state.thread_index() != 0) ? 1 : 0); struct Shared { absl::Mutex mu; std::atomic<int> looping_threads{0}; std::atomic<int> blocked_threads{0}; std::atomic<bool> thread_has_mutex{false}; }; static absl::NoDestructor<Shared> shared; // Set up 'blocked_threads' to count how many threads are currently blocked // in Abseil synchronization code. // // NOTE: Blocking done within the Google Benchmark library itself (e.g. // the barrier which synchronizes threads entering and exiting the benchmark // loop) does _not_ get registered in this counter. This is because Google // Benchmark uses its own synchronization primitives based on std::mutex, not // Abseil synchronization primitives. If at some point the benchmark library // merges into Abseil, this code may break. absl::synchronization_internal::PerThreadSem::SetThreadBlockedCounter( &shared->blocked_threads); // The benchmark framework may run several iterations in the same process, // reusing the same static-initialized 'shared' object. Given the semantics // of the members, here, we expect everything to be reset to zero by the // end of any iteration. Assert that's the case, just to be sure. ABSL_RAW_CHECK( shared->looping_threads.load(std::memory_order_relaxed) == 0 && shared->blocked_threads.load(std::memory_order_relaxed) == 0 && !shared->thread_has_mutex.load(std::memory_order_relaxed), "Shared state isn't zeroed at start of benchmark iteration"); static constexpr int kBatchSize = 1000; while (state.KeepRunningBatch(kBatchSize)) { shared->looping_threads.fetch_add(1); for (int i = 0; i < kBatchSize; i++) { { absl::MutexLock l(&shared->mu); shared->thread_has_mutex.store(true, std::memory_order_relaxed); // Spin until all other threads are either out of the benchmark loop // or blocked on the mutex. This ensures that the mutex queue is kept // at its maximal length to benchmark the performance of queueing on // a highly contended mutex. while (shared->looping_threads.load(std::memory_order_relaxed) - shared->blocked_threads.load(std::memory_order_relaxed) != 1) { } shared->thread_has_mutex.store(false); } // Spin until some other thread has acquired the mutex before we block // again. This ensures that we always go through the slow (queueing) // acquisition path rather than reacquiring the mutex we just released. while (!shared->thread_has_mutex.load(std::memory_order_relaxed) && shared->looping_threads.load(std::memory_order_relaxed) > 1) { } } // The benchmark framework uses a barrier to ensure that all of the threads // complete their benchmark loop together before any of the threads exit // the loop. So, we need to remove ourselves from the "looping threads" // counter here before potentially blocking on that barrier. Otherwise, // another thread spinning above might wait forever for this thread to // block on the mutex while we in fact are waiting to exit. shared->looping_threads.fetch_add(-1); } absl::synchronization_internal::PerThreadSem::SetThreadBlockedCounter( nullptr); } BENCHMARK(BM_MutexEnqueue) ->Threads(4) ->Threads(64) ->Threads(128) ->Threads(512) ->ArgName("multiple_priorities") ->Arg(false) ->Arg(true); template <typename MutexType> void BM_Contended(benchmark::State& state) { int priority = state.thread_index() % state.range(1); ScopedThreadMutexPriority priority_setter(priority); struct Shared { MutexType mu; int data = 0; }; static absl::NoDestructor<Shared> shared; int local = 0; for (auto _ : state) { // Here we model both local work outside of the critical section as well as // some work inside of the critical section. The idea is to capture some // more or less realisitic contention levels. // If contention is too low, the benchmark won't measure anything useful. // If contention is unrealistically high, the benchmark will favor // bad mutex implementations that block and otherwise distract threads // from the mutex and shared state for as much as possible. // To achieve this amount of local work is multiplied by number of threads // to keep ratio between local work and critical section approximately // equal regardless of number of threads. DelayNs(100 * state.threads(), &local); RaiiLocker<MutexType> locker(&shared->mu); DelayNs(state.range(0), &shared->data); } } void SetupBenchmarkArgs(benchmark::internal::Benchmark* bm, bool do_test_priorities) { const int max_num_priorities = do_test_priorities ? 2 : 1; bm->UseRealTime() // ThreadPerCpu poorly handles non-power-of-two CPU counts. ->Threads(1) ->Threads(2) ->Threads(4) ->Threads(6) ->Threads(8) ->Threads(12) ->Threads(16) ->Threads(24) ->Threads(32) ->Threads(48) ->Threads(64) ->Threads(96) ->Threads(128) ->Threads(192) ->Threads(256) ->ArgNames({"cs_ns", "num_prios"}); // Some empirically chosen amounts of work in critical section. // 1 is low contention, 2000 is high contention and few values in between. for (int critical_section_ns : {1, 20, 50, 200, 2000}) { for (int num_priorities = 1; num_priorities <= max_num_priorities; num_priorities++) { bm->ArgPair(critical_section_ns, num_priorities); } } } BENCHMARK_TEMPLATE(BM_Contended, absl::Mutex) ->Apply([](benchmark::internal::Benchmark* bm) { SetupBenchmarkArgs(bm, /*do_test_priorities=*/true); }); BENCHMARK_TEMPLATE(BM_Contended, absl::base_internal::SpinLock) ->Apply([](benchmark::internal::Benchmark* bm) { SetupBenchmarkArgs(bm, /*do_test_priorities=*/false); }); BENCHMARK_TEMPLATE(BM_Contended, std::mutex) ->Apply([](benchmark::internal::Benchmark* bm) { SetupBenchmarkArgs(bm, /*do_test_priorities=*/false); }); // Measure the overhead of conditions on mutex release (when they must be // evaluated). Mutex has (some) support for equivalence classes allowing // Conditions with the same function/argument to potentially not be multiply // evaluated. // // num_classes==0 is used for the special case of every waiter being distinct. void BM_ConditionWaiters(benchmark::State& state) { int num_classes = state.range(0); int num_waiters = state.range(1); struct Helper { static void Waiter(absl::BlockingCounter* init, absl::Mutex* m, int* p) { init->DecrementCount(); m->LockWhen(absl::Condition( static_cast<bool (*)(int*)>([](int* v) { return *v == 0; }), p)); m->Unlock(); } }; if (num_classes == 0) { // No equivalence classes. num_classes = num_waiters; } absl::BlockingCounter init(num_waiters); absl::Mutex mu; std::vector<int> equivalence_classes(num_classes, 1); // Must be declared last to be destroyed first. absl::synchronization_internal::ThreadPool pool(num_waiters); for (int i = 0; i < num_waiters; i++) { // Mutex considers Conditions with the same function and argument // to be equivalent. pool.Schedule([&, i] { Helper::Waiter(&init, &mu, &equivalence_classes[i % num_classes]); }); } init.Wait(); for (auto _ : state) { mu.Lock(); mu.Unlock(); // Each unlock requires Condition evaluation for our waiters. } mu.Lock(); for (int i = 0; i < num_classes; i++) { equivalence_classes[i] = 0; } mu.Unlock(); } // Some configurations have higher thread limits than others. #if defined(__linux__) && !defined(ABSL_HAVE_THREAD_SANITIZER) constexpr int kMaxConditionWaiters = 8192; #else constexpr int kMaxConditionWaiters = 1024; #endif BENCHMARK(BM_ConditionWaiters)->RangePair(0, 2, 1, kMaxConditionWaiters); } // namespace