// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/strings/string_view.h" #include #include #include #include #include #include #include #include #include "benchmark/benchmark.h" #include "absl/base/attributes.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/macros.h" #include "absl/strings/str_cat.h" namespace { void BM_StringViewFromString(benchmark::State& state) { std::string s(state.range(0), 'x'); std::string* ps = &s; struct SV { SV() = default; explicit SV(const std::string& s) : sv(s) {} absl::string_view sv; } sv; SV* psv = &sv; benchmark::DoNotOptimize(ps); benchmark::DoNotOptimize(psv); for (auto _ : state) { new (psv) SV(*ps); benchmark::DoNotOptimize(sv); } } BENCHMARK(BM_StringViewFromString)->Arg(12)->Arg(128); // Provide a forcibly out-of-line wrapper for operator== that can be used in // benchmarks to measure the impact of inlining. ABSL_ATTRIBUTE_NOINLINE bool NonInlinedEq(absl::string_view a, absl::string_view b) { return a == b; } // We use functions that cannot be inlined to perform the comparison loops so // that inlining of the operator== can't optimize away *everything*. ABSL_ATTRIBUTE_NOINLINE void DoEqualityComparisons(benchmark::State& state, absl::string_view a, absl::string_view b) { for (auto _ : state) { benchmark::DoNotOptimize(a == b); } } void BM_EqualIdentical(benchmark::State& state) { std::string x(state.range(0), 'a'); DoEqualityComparisons(state, x, x); } BENCHMARK(BM_EqualIdentical)->DenseRange(0, 3)->Range(4, 1 << 10); void BM_EqualSame(benchmark::State& state) { std::string x(state.range(0), 'a'); std::string y = x; DoEqualityComparisons(state, x, y); } BENCHMARK(BM_EqualSame) ->DenseRange(0, 10) ->Arg(20) ->Arg(40) ->Arg(70) ->Arg(110) ->Range(160, 4096); void BM_EqualDifferent(benchmark::State& state) { const int len = state.range(0); std::string x(len, 'a'); std::string y = x; if (len > 0) { y[len - 1] = 'b'; } DoEqualityComparisons(state, x, y); } BENCHMARK(BM_EqualDifferent)->DenseRange(0, 3)->Range(4, 1 << 10); // This benchmark is intended to check that important simplifications can be // made with absl::string_view comparisons against constant strings. The idea is // that if constant strings cause redundant components of the comparison, the // compiler should detect and eliminate them. Here we use 8 different strings, // each with the same size. Provided our comparison makes the implementation // inline-able by the compiler, it should fold all of these away into a single // size check once per loop iteration. ABSL_ATTRIBUTE_NOINLINE void DoConstantSizeInlinedEqualityComparisons(benchmark::State& state, absl::string_view a) { for (auto _ : state) { benchmark::DoNotOptimize(a == "aaa"); benchmark::DoNotOptimize(a == "bbb"); benchmark::DoNotOptimize(a == "ccc"); benchmark::DoNotOptimize(a == "ddd"); benchmark::DoNotOptimize(a == "eee"); benchmark::DoNotOptimize(a == "fff"); benchmark::DoNotOptimize(a == "ggg"); benchmark::DoNotOptimize(a == "hhh"); } } void BM_EqualConstantSizeInlined(benchmark::State& state) { std::string x(state.range(0), 'a'); DoConstantSizeInlinedEqualityComparisons(state, x); } // We only need to check for size of 3, and <> 3 as this benchmark only has to // do with size differences. BENCHMARK(BM_EqualConstantSizeInlined)->DenseRange(2, 4); // This benchmark exists purely to give context to the above timings: this is // what they would look like if the compiler is completely unable to simplify // between two comparisons when they are comparing against constant strings. ABSL_ATTRIBUTE_NOINLINE void DoConstantSizeNonInlinedEqualityComparisons(benchmark::State& state, absl::string_view a) { for (auto _ : state) { // Force these out-of-line to compare with the above function. benchmark::DoNotOptimize(NonInlinedEq(a, "aaa")); benchmark::DoNotOptimize(NonInlinedEq(a, "bbb")); benchmark::DoNotOptimize(NonInlinedEq(a, "ccc")); benchmark::DoNotOptimize(NonInlinedEq(a, "ddd")); benchmark::DoNotOptimize(NonInlinedEq(a, "eee")); benchmark::DoNotOptimize(NonInlinedEq(a, "fff")); benchmark::DoNotOptimize(NonInlinedEq(a, "ggg")); benchmark::DoNotOptimize(NonInlinedEq(a, "hhh")); } } void BM_EqualConstantSizeNonInlined(benchmark::State& state) { std::string x(state.range(0), 'a'); DoConstantSizeNonInlinedEqualityComparisons(state, x); } // We only need to check for size of 3, and <> 3 as this benchmark only has to // do with size differences. BENCHMARK(BM_EqualConstantSizeNonInlined)->DenseRange(2, 4); void BM_CompareSame(benchmark::State& state) { const int len = state.range(0); std::string x; for (int i = 0; i < len; i++) { x += 'a'; } std::string y = x; absl::string_view a = x; absl::string_view b = y; for (auto _ : state) { benchmark::DoNotOptimize(a); benchmark::DoNotOptimize(b); benchmark::DoNotOptimize(a.compare(b)); } } BENCHMARK(BM_CompareSame)->DenseRange(0, 3)->Range(4, 1 << 10); void BM_CompareFirstOneLess(benchmark::State& state) { const int len = state.range(0); std::string x(len, 'a'); std::string y = x; y.back() = 'b'; absl::string_view a = x; absl::string_view b = y; for (auto _ : state) { benchmark::DoNotOptimize(a); benchmark::DoNotOptimize(b); benchmark::DoNotOptimize(a.compare(b)); } } BENCHMARK(BM_CompareFirstOneLess)->DenseRange(1, 3)->Range(4, 1 << 10); void BM_CompareSecondOneLess(benchmark::State& state) { const int len = state.range(0); std::string x(len, 'a'); std::string y = x; x.back() = 'b'; absl::string_view a = x; absl::string_view b = y; for (auto _ : state) { benchmark::DoNotOptimize(a); benchmark::DoNotOptimize(b); benchmark::DoNotOptimize(a.compare(b)); } } BENCHMARK(BM_CompareSecondOneLess)->DenseRange(1, 3)->Range(4, 1 << 10); void BM_find_string_view_len_one(benchmark::State& state) { std::string haystack(state.range(0), '0'); absl::string_view s(haystack); for (auto _ : state) { benchmark::DoNotOptimize(s.find("x")); // not present; length 1 } } BENCHMARK(BM_find_string_view_len_one)->Range(1, 1 << 20); void BM_find_string_view_len_two(benchmark::State& state) { std::string haystack(state.range(0), '0'); absl::string_view s(haystack); for (auto _ : state) { benchmark::DoNotOptimize(s.find("xx")); // not present; length 2 } } BENCHMARK(BM_find_string_view_len_two)->Range(1, 1 << 20); void BM_find_one_char(benchmark::State& state) { std::string haystack(state.range(0), '0'); absl::string_view s(haystack); for (auto _ : state) { benchmark::DoNotOptimize(s.find('x')); // not present } } BENCHMARK(BM_find_one_char)->Range(1, 1 << 20); void BM_rfind_one_char(benchmark::State& state) { std::string haystack(state.range(0), '0'); absl::string_view s(haystack); for (auto _ : state) { benchmark::DoNotOptimize(s.rfind('x')); // not present } } BENCHMARK(BM_rfind_one_char)->Range(1, 1 << 20); void BM_worst_case_find_first_of(benchmark::State& state, int haystack_len) { const int needle_len = state.range(0); std::string needle; for (int i = 0; i < needle_len; ++i) { needle += 'a' + i; } std::string haystack(haystack_len, '0'); // 1000 zeros. absl::string_view s(haystack); for (auto _ : state) { benchmark::DoNotOptimize(s.find_first_of(needle)); } } void BM_find_first_of_short(benchmark::State& state) { BM_worst_case_find_first_of(state, 10); } void BM_find_first_of_medium(benchmark::State& state) { BM_worst_case_find_first_of(state, 100); } void BM_find_first_of_long(benchmark::State& state) { BM_worst_case_find_first_of(state, 1000); } BENCHMARK(BM_find_first_of_short)->DenseRange(0, 4)->Arg(8)->Arg(16)->Arg(32); BENCHMARK(BM_find_first_of_medium)->DenseRange(0, 4)->Arg(8)->Arg(16)->Arg(32); BENCHMARK(BM_find_first_of_long)->DenseRange(0, 4)->Arg(8)->Arg(16)->Arg(32); struct EasyMap : public std::map { explicit EasyMap(size_t) {} }; // This templated benchmark helper function is intended to stress operator== or // operator< in a realistic test. It surely isn't entirely realistic, but it's // a start. The test creates a map of type Map, a template arg, and populates // it with table_size key/value pairs. Each key has WordsPerKey words. After // creating the map, a number of lookups are done in random order. Some keys // are used much more frequently than others in this phase of the test. template void StringViewMapBenchmark(benchmark::State& state) { const int table_size = state.range(0); const double kFractionOfKeysThatAreHot = 0.2; const int kNumLookupsOfHotKeys = 20; const int kNumLookupsOfColdKeys = 1; const char* words[] = {"the", "quick", "brown", "fox", "jumped", "over", "the", "lazy", "dog", "and", "found", "a", "large", "mushroom", "and", "a", "couple", "crickets", "eating", "pie"}; // Create some keys that consist of words in random order. std::random_device r; std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()}); std::mt19937 rng(seed); std::vector keys(table_size); std::vector all_indices; const int kBlockSize = 1 << 12; std::unordered_set t(kBlockSize); std::uniform_int_distribution uniform(0, ABSL_ARRAYSIZE(words) - 1); for (int i = 0; i < table_size; i++) { all_indices.push_back(i); do { keys[i].clear(); for (int j = 0; j < WordsPerKey; j++) { absl::StrAppend(&keys[i], j > 0 ? " " : "", words[uniform(rng)]); } } while (!t.insert(keys[i]).second); } // Create a list of strings to lookup: a permutation of the array of // keys we just created, with repeats. "Hot" keys get repeated more. std::shuffle(all_indices.begin(), all_indices.end(), rng); const int num_hot = table_size * kFractionOfKeysThatAreHot; const int num_cold = table_size - num_hot; std::vector hot_indices(all_indices.begin(), all_indices.begin() + num_hot); std::vector indices; for (int i = 0; i < kNumLookupsOfColdKeys; i++) { indices.insert(indices.end(), all_indices.begin(), all_indices.end()); } for (int i = 0; i < kNumLookupsOfHotKeys - kNumLookupsOfColdKeys; i++) { indices.insert(indices.end(), hot_indices.begin(), hot_indices.end()); } std::shuffle(indices.begin(), indices.end(), rng); ABSL_RAW_CHECK( num_cold * kNumLookupsOfColdKeys + num_hot * kNumLookupsOfHotKeys == indices.size(), ""); // After constructing the array we probe it with absl::string_views built from // test_strings. This means operator== won't see equal pointers, so // it'll have to check for equal lengths and equal characters. std::vector test_strings(indices.size()); for (int i = 0; i < indices.size(); i++) { test_strings[i] = keys[indices[i]]; } // Run the benchmark. It includes map construction but is mostly // map lookups. for (auto _ : state) { Map h(table_size); for (int i = 0; i < table_size; i++) { h[keys[i]] = i * 2; } ABSL_RAW_CHECK(h.size() == table_size, ""); uint64_t sum = 0; for (int i = 0; i < indices.size(); i++) { sum += h[test_strings[i]]; } benchmark::DoNotOptimize(sum); } } void BM_StdMap_4(benchmark::State& state) { StringViewMapBenchmark(state); } BENCHMARK(BM_StdMap_4)->Range(1 << 10, 1 << 16); void BM_StdMap_8(benchmark::State& state) { StringViewMapBenchmark(state); } BENCHMARK(BM_StdMap_8)->Range(1 << 10, 1 << 16); void BM_CopyToStringNative(benchmark::State& state) { std::string src(state.range(0), 'x'); absl::string_view sv(src); std::string dst; for (auto _ : state) { dst.assign(sv.begin(), sv.end()); } } BENCHMARK(BM_CopyToStringNative)->Range(1 << 3, 1 << 12); void BM_AppendToStringNative(benchmark::State& state) { std::string src(state.range(0), 'x'); absl::string_view sv(src); std::string dst; for (auto _ : state) { dst.clear(); dst.insert(dst.end(), sv.begin(), sv.end()); } } BENCHMARK(BM_AppendToStringNative)->Range(1 << 3, 1 << 12); } // namespace