// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/strings/str_cat.h" #include #include #include #include #include #include #include #include "absl/base/config.h" #include "absl/base/nullability.h" #include "absl/strings/internal/resize_uninitialized.h" #include "absl/strings/numbers.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN // ---------------------------------------------------------------------- // StrCat() // This merges the given strings or integers, with no delimiter. This // is designed to be the fastest possible way to construct a string out // of a mix of raw C strings, string_views, strings, and integer values. // ---------------------------------------------------------------------- namespace { // Append is merely a version of memcpy that returns the address of the byte // after the area just overwritten. absl::Nonnull Append(absl::Nonnull out, const AlphaNum& x) { // memcpy is allowed to overwrite arbitrary memory, so doing this after the // call would force an extra fetch of x.size(). char* after = out + x.size(); if (x.size() != 0) { memcpy(out, x.data(), x.size()); } return after; } } // namespace std::string StrCat(const AlphaNum& a, const AlphaNum& b) { std::string result; absl::strings_internal::STLStringResizeUninitialized(&result, a.size() + b.size()); char* const begin = &result[0]; char* out = begin; out = Append(out, a); out = Append(out, b); assert(out == begin + result.size()); return result; } std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c) { std::string result; strings_internal::STLStringResizeUninitialized( &result, a.size() + b.size() + c.size()); char* const begin = &result[0]; char* out = begin; out = Append(out, a); out = Append(out, b); out = Append(out, c); assert(out == begin + result.size()); return result; } std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d) { std::string result; strings_internal::STLStringResizeUninitialized( &result, a.size() + b.size() + c.size() + d.size()); char* const begin = &result[0]; char* out = begin; out = Append(out, a); out = Append(out, b); out = Append(out, c); out = Append(out, d); assert(out == begin + result.size()); return result; } namespace strings_internal { // Do not call directly - these are not part of the public API. void STLStringAppendUninitializedAmortized(std::string* dest, size_t to_append) { strings_internal::AppendUninitializedTraits::Append(dest, to_append); } template std::enable_if_t::value, std::string> IntegerToString( Integer i) { std::string str; const auto /* either bool or std::false_type */ is_negative = absl::numbers_internal::IsNegative(i); const uint32_t digits = absl::numbers_internal::Base10Digits( absl::numbers_internal::UnsignedAbsoluteValue(i)); absl::strings_internal::STLStringResizeUninitialized( &str, digits + static_cast(is_negative)); absl::numbers_internal::FastIntToBufferBackward(i, &str[str.size()], digits); return str; } template <> std::string IntegerToString(long i) { // NOLINT if (sizeof(i) <= sizeof(int)) { return IntegerToString(static_cast(i)); } else { return IntegerToString(static_cast(i)); // NOLINT } } template <> std::string IntegerToString(unsigned long i) { // NOLINT if (sizeof(i) <= sizeof(unsigned int)) { return IntegerToString(static_cast(i)); } else { return IntegerToString(static_cast(i)); // NOLINT } } template std::enable_if_t::value, std::string> FloatToString(Float f) { std::string result; strings_internal::STLStringResizeUninitialized( &result, numbers_internal::kSixDigitsToBufferSize); char* start = &result[0]; result.erase(numbers_internal::SixDigitsToBuffer(f, start)); return result; } std::string SingleArgStrCat(int x) { return IntegerToString(x); } std::string SingleArgStrCat(unsigned int x) { return IntegerToString(x); } // NOLINTNEXTLINE std::string SingleArgStrCat(long x) { return IntegerToString(x); } // NOLINTNEXTLINE std::string SingleArgStrCat(unsigned long x) { return IntegerToString(x); } // NOLINTNEXTLINE std::string SingleArgStrCat(long long x) { return IntegerToString(x); } // NOLINTNEXTLINE std::string SingleArgStrCat(unsigned long long x) { return IntegerToString(x); } std::string SingleArgStrCat(float x) { return FloatToString(x); } std::string SingleArgStrCat(double x) { return FloatToString(x); } template std::enable_if_t::value, void> AppendIntegerToString( std::string& str, Integer i) { const auto /* either bool or std::false_type */ is_negative = absl::numbers_internal::IsNegative(i); const uint32_t digits = absl::numbers_internal::Base10Digits( absl::numbers_internal::UnsignedAbsoluteValue(i)); absl::strings_internal::STLStringAppendUninitializedAmortized( &str, digits + static_cast(is_negative)); absl::numbers_internal::FastIntToBufferBackward(i, &str[str.size()], digits); } template <> void AppendIntegerToString(std::string& str, long i) { // NOLINT if (sizeof(i) <= sizeof(int)) { return AppendIntegerToString(str, static_cast(i)); } else { return AppendIntegerToString(str, static_cast(i)); // NOLINT } } template <> void AppendIntegerToString(std::string& str, unsigned long i) { // NOLINT if (sizeof(i) <= sizeof(unsigned int)) { return AppendIntegerToString(str, static_cast(i)); } else { return AppendIntegerToString(str, static_cast(i)); // NOLINT } } // `SingleArgStrAppend` overloads are defined here for the same reasons as with // `SingleArgStrCat` above. void SingleArgStrAppend(std::string& str, int x) { return AppendIntegerToString(str, x); } void SingleArgStrAppend(std::string& str, unsigned int x) { return AppendIntegerToString(str, x); } // NOLINTNEXTLINE void SingleArgStrAppend(std::string& str, long x) { return AppendIntegerToString(str, x); } // NOLINTNEXTLINE void SingleArgStrAppend(std::string& str, unsigned long x) { return AppendIntegerToString(str, x); } // NOLINTNEXTLINE void SingleArgStrAppend(std::string& str, long long x) { return AppendIntegerToString(str, x); } // NOLINTNEXTLINE void SingleArgStrAppend(std::string& str, unsigned long long x) { return AppendIntegerToString(str, x); } std::string CatPieces(std::initializer_list pieces) { std::string result; size_t total_size = 0; for (absl::string_view piece : pieces) total_size += piece.size(); strings_internal::STLStringResizeUninitialized(&result, total_size); char* const begin = &result[0]; char* out = begin; for (absl::string_view piece : pieces) { const size_t this_size = piece.size(); if (this_size != 0) { memcpy(out, piece.data(), this_size); out += this_size; } } assert(out == begin + result.size()); return result; } // It's possible to call StrAppend with an absl::string_view that is itself a // fragment of the string we're appending to. However the results of this are // random. Therefore, check for this in debug mode. Use unsigned math so we // only have to do one comparison. Note, there's an exception case: appending an // empty string is always allowed. #define ASSERT_NO_OVERLAP(dest, src) \ assert(((src).size() == 0) || \ (uintptr_t((src).data() - (dest).data()) > uintptr_t((dest).size()))) void AppendPieces(absl::Nonnull dest, std::initializer_list pieces) { size_t old_size = dest->size(); size_t to_append = 0; for (absl::string_view piece : pieces) { ASSERT_NO_OVERLAP(*dest, piece); to_append += piece.size(); } strings_internal::STLStringAppendUninitializedAmortized(dest, to_append); char* const begin = &(*dest)[0]; char* out = begin + old_size; for (absl::string_view piece : pieces) { const size_t this_size = piece.size(); if (this_size != 0) { memcpy(out, piece.data(), this_size); out += this_size; } } assert(out == begin + dest->size()); } } // namespace strings_internal void StrAppend(absl::Nonnull dest, const AlphaNum& a) { ASSERT_NO_OVERLAP(*dest, a); std::string::size_type old_size = dest->size(); strings_internal::STLStringAppendUninitializedAmortized(dest, a.size()); char* const begin = &(*dest)[0]; char* out = begin + old_size; out = Append(out, a); assert(out == begin + dest->size()); } void StrAppend(absl::Nonnull dest, const AlphaNum& a, const AlphaNum& b) { ASSERT_NO_OVERLAP(*dest, a); ASSERT_NO_OVERLAP(*dest, b); std::string::size_type old_size = dest->size(); strings_internal::STLStringAppendUninitializedAmortized(dest, a.size() + b.size()); char* const begin = &(*dest)[0]; char* out = begin + old_size; out = Append(out, a); out = Append(out, b); assert(out == begin + dest->size()); } void StrAppend(absl::Nonnull dest, const AlphaNum& a, const AlphaNum& b, const AlphaNum& c) { ASSERT_NO_OVERLAP(*dest, a); ASSERT_NO_OVERLAP(*dest, b); ASSERT_NO_OVERLAP(*dest, c); std::string::size_type old_size = dest->size(); strings_internal::STLStringAppendUninitializedAmortized( dest, a.size() + b.size() + c.size()); char* const begin = &(*dest)[0]; char* out = begin + old_size; out = Append(out, a); out = Append(out, b); out = Append(out, c); assert(out == begin + dest->size()); } void StrAppend(absl::Nonnull dest, const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d) { ASSERT_NO_OVERLAP(*dest, a); ASSERT_NO_OVERLAP(*dest, b); ASSERT_NO_OVERLAP(*dest, c); ASSERT_NO_OVERLAP(*dest, d); std::string::size_type old_size = dest->size(); strings_internal::STLStringAppendUninitializedAmortized( dest, a.size() + b.size() + c.size() + d.size()); char* const begin = &(*dest)[0]; char* out = begin + old_size; out = Append(out, a); out = Append(out, b); out = Append(out, c); out = Append(out, d); assert(out == begin + dest->size()); } ABSL_NAMESPACE_END } // namespace absl