// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include "benchmark/benchmark.h" #include "absl/base/internal/raw_logging.h" #include "absl/random/distributions.h" #include "absl/random/random.h" #include "absl/strings/numbers.h" #include "absl/strings/string_view.h" namespace { template void BM_FastIntToBuffer(benchmark::State& state) { const int inc = state.range(0); char buf[absl::numbers_internal::kFastToBufferSize]; // Use the unsigned type to increment to take advantage of well-defined // modular arithmetic. typename std::make_unsigned::type x = 0; for (auto _ : state) { absl::numbers_internal::FastIntToBuffer(static_cast(x), buf); x += inc; } } BENCHMARK_TEMPLATE(BM_FastIntToBuffer, int32_t)->Range(0, 1 << 15); BENCHMARK_TEMPLATE(BM_FastIntToBuffer, int64_t)->Range(0, 1 << 30); // Creates an integer that would be printed as `num_digits` repeated 7s in the // given `base`. `base` must be greater than or equal to 8. int64_t RepeatedSevens(int num_digits, int base) { ABSL_RAW_CHECK(base >= 8, ""); int64_t num = 7; while (--num_digits) num = base * num + 7; return num; } void BM_safe_strto32_string(benchmark::State& state) { const int digits = state.range(0); const int base = state.range(1); std::string str(digits, '7'); // valid in octal, decimal and hex int32_t value = 0; for (auto _ : state) { benchmark::DoNotOptimize( absl::numbers_internal::safe_strto32_base(str, &value, base)); } ABSL_RAW_CHECK(value == RepeatedSevens(digits, base), ""); } BENCHMARK(BM_safe_strto32_string) ->ArgPair(1, 8) ->ArgPair(1, 10) ->ArgPair(1, 16) ->ArgPair(2, 8) ->ArgPair(2, 10) ->ArgPair(2, 16) ->ArgPair(4, 8) ->ArgPair(4, 10) ->ArgPair(4, 16) ->ArgPair(8, 8) ->ArgPair(8, 10) ->ArgPair(8, 16) ->ArgPair(10, 8) ->ArgPair(9, 10); void BM_safe_strto64_string(benchmark::State& state) { const int digits = state.range(0); const int base = state.range(1); std::string str(digits, '7'); // valid in octal, decimal and hex int64_t value = 0; for (auto _ : state) { benchmark::DoNotOptimize( absl::numbers_internal::safe_strto64_base(str, &value, base)); } ABSL_RAW_CHECK(value == RepeatedSevens(digits, base), ""); } BENCHMARK(BM_safe_strto64_string) ->ArgPair(1, 8) ->ArgPair(1, 10) ->ArgPair(1, 16) ->ArgPair(2, 8) ->ArgPair(2, 10) ->ArgPair(2, 16) ->ArgPair(4, 8) ->ArgPair(4, 10) ->ArgPair(4, 16) ->ArgPair(8, 8) ->ArgPair(8, 10) ->ArgPair(8, 16) ->ArgPair(16, 8) ->ArgPair(16, 10) ->ArgPair(16, 16); void BM_safe_strtou32_string(benchmark::State& state) { const int digits = state.range(0); const int base = state.range(1); std::string str(digits, '7'); // valid in octal, decimal and hex uint32_t value = 0; for (auto _ : state) { benchmark::DoNotOptimize( absl::numbers_internal::safe_strtou32_base(str, &value, base)); } ABSL_RAW_CHECK(value == RepeatedSevens(digits, base), ""); } BENCHMARK(BM_safe_strtou32_string) ->ArgPair(1, 8) ->ArgPair(1, 10) ->ArgPair(1, 16) ->ArgPair(2, 8) ->ArgPair(2, 10) ->ArgPair(2, 16) ->ArgPair(4, 8) ->ArgPair(4, 10) ->ArgPair(4, 16) ->ArgPair(8, 8) ->ArgPair(8, 10) ->ArgPair(8, 16) ->ArgPair(10, 8) ->ArgPair(9, 10); void BM_safe_strtou64_string(benchmark::State& state) { const int digits = state.range(0); const int base = state.range(1); std::string str(digits, '7'); // valid in octal, decimal and hex uint64_t value = 0; for (auto _ : state) { benchmark::DoNotOptimize( absl::numbers_internal::safe_strtou64_base(str, &value, base)); } ABSL_RAW_CHECK(value == RepeatedSevens(digits, base), ""); } BENCHMARK(BM_safe_strtou64_string) ->ArgPair(1, 8) ->ArgPair(1, 10) ->ArgPair(1, 16) ->ArgPair(2, 8) ->ArgPair(2, 10) ->ArgPair(2, 16) ->ArgPair(4, 8) ->ArgPair(4, 10) ->ArgPair(4, 16) ->ArgPair(8, 8) ->ArgPair(8, 10) ->ArgPair(8, 16) ->ArgPair(16, 8) ->ArgPair(16, 10) ->ArgPair(16, 16); // Returns a vector of `num_strings` strings. Each string represents a // floating point number with `num_digits` digits before the decimal point and // another `num_digits` digits after. std::vector MakeFloatStrings(int num_strings, int num_digits) { // For convenience, use a random number generator to generate the test data. // We don't actually need random properties, so use a fixed seed. std::minstd_rand0 rng(1); std::uniform_int_distribution random_digit('0', '9'); std::vector float_strings(num_strings); for (std::string& s : float_strings) { s.reserve(2 * num_digits + 1); for (int i = 0; i < num_digits; ++i) { s.push_back(static_cast(random_digit(rng))); } s.push_back('.'); for (int i = 0; i < num_digits; ++i) { s.push_back(static_cast(random_digit(rng))); } } return float_strings; } template StringType GetStringAs(const std::string& s) { return static_cast(s); } template <> const char* GetStringAs(const std::string& s) { return s.c_str(); } template std::vector GetStringsAs(const std::vector& strings) { std::vector result; result.reserve(strings.size()); for (const std::string& s : strings) { result.push_back(GetStringAs(s)); } return result; } template void BM_SimpleAtof(benchmark::State& state) { const int num_strings = state.range(0); const int num_digits = state.range(1); std::vector backing_strings = MakeFloatStrings(num_strings, num_digits); std::vector inputs = GetStringsAs(backing_strings); float value; for (auto _ : state) { for (const T& input : inputs) { benchmark::DoNotOptimize(absl::SimpleAtof(input, &value)); } } } BENCHMARK_TEMPLATE(BM_SimpleAtof, absl::string_view) ->ArgPair(10, 1) ->ArgPair(10, 2) ->ArgPair(10, 4) ->ArgPair(10, 8); BENCHMARK_TEMPLATE(BM_SimpleAtof, const char*) ->ArgPair(10, 1) ->ArgPair(10, 2) ->ArgPair(10, 4) ->ArgPair(10, 8); BENCHMARK_TEMPLATE(BM_SimpleAtof, std::string) ->ArgPair(10, 1) ->ArgPair(10, 2) ->ArgPair(10, 4) ->ArgPair(10, 8); template void BM_SimpleAtod(benchmark::State& state) { const int num_strings = state.range(0); const int num_digits = state.range(1); std::vector backing_strings = MakeFloatStrings(num_strings, num_digits); std::vector inputs = GetStringsAs(backing_strings); double value; for (auto _ : state) { for (const T& input : inputs) { benchmark::DoNotOptimize(absl::SimpleAtod(input, &value)); } } } BENCHMARK_TEMPLATE(BM_SimpleAtod, absl::string_view) ->ArgPair(10, 1) ->ArgPair(10, 2) ->ArgPair(10, 4) ->ArgPair(10, 8); BENCHMARK_TEMPLATE(BM_SimpleAtod, const char*) ->ArgPair(10, 1) ->ArgPair(10, 2) ->ArgPair(10, 4) ->ArgPair(10, 8); BENCHMARK_TEMPLATE(BM_SimpleAtod, std::string) ->ArgPair(10, 1) ->ArgPair(10, 2) ->ArgPair(10, 4) ->ArgPair(10, 8); void BM_FastHexToBufferZeroPad16(benchmark::State& state) { absl::BitGen rng; std::vector nums; nums.resize(1000); auto min = std::numeric_limits::min(); auto max = std::numeric_limits::max(); for (auto& num : nums) { num = absl::LogUniform(rng, min, max); } char buf[16]; while (state.KeepRunningBatch(nums.size())) { for (auto num : nums) { auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(num, buf); benchmark::DoNotOptimize(digits); benchmark::DoNotOptimize(buf); } } } BENCHMARK(BM_FastHexToBufferZeroPad16); } // namespace