// Copyright 2021 The Abseil Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/strings/internal/cord_rep_btree.h" #include #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/optimization.h" #include "absl/strings/internal/cord_data_edge.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_consume.h" #include "absl/strings/internal/cord_rep_flat.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr size_t CordRepBtree::kMaxCapacity; #endif namespace { using NodeStack = CordRepBtree * [CordRepBtree::kMaxDepth]; using EdgeType = CordRepBtree::EdgeType; using OpResult = CordRepBtree::OpResult; using CopyResult = CordRepBtree::CopyResult; constexpr auto kFront = CordRepBtree::kFront; constexpr auto kBack = CordRepBtree::kBack; ABSL_CONST_INIT std::atomic cord_btree_exhaustive_validation(false); // Implementation of the various 'Dump' functions. // Prints the entire tree structure or 'rep'. External callers should // not specify 'depth' and leave it to its default (0) value. // Rep may be a CordRepBtree tree, or a SUBSTRING / EXTERNAL / FLAT node. void DumpAll(const CordRep* rep, bool include_contents, std::ostream& stream, size_t depth = 0) { // Allow for full height trees + substring -> flat / external nodes. assert(depth <= CordRepBtree::kMaxDepth + 2); std::string sharing = const_cast(rep)->refcount.IsOne() ? std::string("Private") : absl::StrCat("Shared(", rep->refcount.Get(), ")"); std::string sptr = absl::StrCat("0x", absl::Hex(rep)); // Dumps the data contents of `rep` if `include_contents` is true. // Always emits a new line character. auto maybe_dump_data = [&stream, include_contents](const CordRep* r) { if (include_contents) { // Allow for up to 60 wide display of content data, which with some // indentation and prefix / labels keeps us within roughly 80-100 wide. constexpr size_t kMaxDataLength = 60; stream << ", data = \"" << EdgeData(r).substr(0, kMaxDataLength) << (r->length > kMaxDataLength ? "\"..." : "\""); } stream << '\n'; }; // For each level, we print the 'shared/private' state and the rep pointer, // indented by two spaces per recursive depth. stream << std::string(depth * 2, ' ') << sharing << " (" << sptr << ") "; if (rep->IsBtree()) { const CordRepBtree* node = rep->btree(); std::string label = node->height() ? absl::StrCat("Node(", node->height(), ")") : "Leaf"; stream << label << ", len = " << node->length << ", begin = " << node->begin() << ", end = " << node->end() << "\n"; for (CordRep* edge : node->Edges()) { DumpAll(edge, include_contents, stream, depth + 1); } } else if (rep->tag == SUBSTRING) { const CordRepSubstring* substring = rep->substring(); stream << "Substring, len = " << rep->length << ", start = " << substring->start; maybe_dump_data(rep); DumpAll(substring->child, include_contents, stream, depth + 1); } else if (rep->tag >= FLAT) { stream << "Flat, len = " << rep->length << ", cap = " << rep->flat()->Capacity(); maybe_dump_data(rep); } else if (rep->tag == EXTERNAL) { stream << "Extn, len = " << rep->length; maybe_dump_data(rep); } } // TODO(b/192061034): add 'bytes to copy' logic to avoid large slop on substring // small data out of large reps, and general efficiency of 'always copy small // data'. Consider making this a cord rep internal library function. CordRepSubstring* CreateSubstring(CordRep* rep, size_t offset, size_t n) { assert(n != 0); assert(offset + n <= rep->length); assert(offset != 0 || n != rep->length); if (rep->tag == SUBSTRING) { CordRepSubstring* substring = rep->substring(); offset += substring->start; rep = CordRep::Ref(substring->child); CordRep::Unref(substring); } assert(rep->IsExternal() || rep->IsFlat()); CordRepSubstring* substring = new CordRepSubstring(); substring->length = n; substring->tag = SUBSTRING; substring->start = offset; substring->child = rep; return substring; } // TODO(b/192061034): consider making this a cord rep library function. inline CordRep* MakeSubstring(CordRep* rep, size_t offset, size_t n) { if (n == rep->length) return rep; if (n == 0) return CordRep::Unref(rep), nullptr; return CreateSubstring(rep, offset, n); } // TODO(b/192061034): consider making this a cord rep library function. inline CordRep* MakeSubstring(CordRep* rep, size_t offset) { if (offset == 0) return rep; return CreateSubstring(rep, offset, rep->length - offset); } // Resizes `edge` to the provided `length`. Adopts a reference on `edge`. // This method directly returns `edge` if `length` equals `edge->length`. // If `is_mutable` is set to true, this function may return `edge` with // `edge->length` set to the new length depending on the type and size of // `edge`. Otherwise, this function returns a new CordRepSubstring value. // Requires `length > 0 && length <= edge->length`. CordRep* ResizeEdge(CordRep* edge, size_t length, bool is_mutable) { assert(length > 0); assert(length <= edge->length); assert(IsDataEdge(edge)); if (length >= edge->length) return edge; if (is_mutable && (edge->tag >= FLAT || edge->tag == SUBSTRING)) { edge->length = length; return edge; } return CreateSubstring(edge, 0, length); } template inline absl::string_view Consume(absl::string_view s, size_t n) { return edge_type == kBack ? s.substr(n) : s.substr(0, s.size() - n); } template inline absl::string_view Consume(char* dst, absl::string_view s, size_t n) { if (edge_type == kBack) { memcpy(dst, s.data(), n); return s.substr(n); } else { const size_t offset = s.size() - n; memcpy(dst, s.data() + offset, n); return s.substr(0, offset); } } // Known issue / optimization weirdness: the store associated with the // decrement introduces traffic between cpus (even if the result of that // traffic does nothing), making this faster than a single call to // refcount.Decrement() checking the zero refcount condition. template inline void FastUnref(R* r, Fn&& fn) { if (r->refcount.IsOne()) { fn(r); } else if (!r->refcount.DecrementExpectHighRefcount()) { fn(r); } } void DeleteSubstring(CordRepSubstring* substring) { CordRep* rep = substring->child; if (!rep->refcount.Decrement()) { if (rep->tag >= FLAT) { CordRepFlat::Delete(rep->flat()); } else { assert(rep->tag == EXTERNAL); CordRepExternal::Delete(rep->external()); } } delete substring; } // Deletes a leaf node data edge. Requires `IsDataEdge(rep)`. void DeleteLeafEdge(CordRep* rep) { assert(IsDataEdge(rep)); if (rep->tag >= FLAT) { CordRepFlat::Delete(rep->flat()); } else if (rep->tag == EXTERNAL) { CordRepExternal::Delete(rep->external()); } else { DeleteSubstring(rep->substring()); } } // StackOperations contains the logic to build a left-most or right-most stack // (leg) down to the leaf level of a btree, and 'unwind' / 'Finalize' methods to // propagate node changes up the stack. template struct StackOperations { // Returns true if the node at 'depth' is not shared, i.e. has a refcount // of one and all of its parent nodes have a refcount of one. inline bool owned(int depth) const { return depth < share_depth; } // Returns the node at 'depth'. inline CordRepBtree* node(int depth) const { return stack[depth]; } // Builds a `depth` levels deep stack starting at `tree` recording which nodes // are private in the form of the 'share depth' where nodes are shared. inline CordRepBtree* BuildStack(CordRepBtree* tree, int depth) { assert(depth <= tree->height()); int current_depth = 0; while (current_depth < depth && tree->refcount.IsOne()) { stack[current_depth++] = tree; tree = tree->Edge(edge_type)->btree(); } share_depth = current_depth + (tree->refcount.IsOne() ? 1 : 0); while (current_depth < depth) { stack[current_depth++] = tree; tree = tree->Edge(edge_type)->btree(); } return tree; } // Builds a stack with the invariant that all nodes are private owned / not // shared. This is used in iterative updates where a previous propagation // guaranteed all nodes are owned / private. inline void BuildOwnedStack(CordRepBtree* tree, int height) { assert(height <= CordRepBtree::kMaxHeight); int depth = 0; while (depth < height) { assert(tree->refcount.IsOne()); stack[depth++] = tree; tree = tree->Edge(edge_type)->btree(); } assert(tree->refcount.IsOne()); share_depth = depth + 1; } // Processes the final 'top level' result action for the tree. // See the 'Action' enum for the various action implications. static inline CordRepBtree* Finalize(CordRepBtree* tree, OpResult result) { switch (result.action) { case CordRepBtree::kPopped: tree = edge_type == kBack ? CordRepBtree::New(tree, result.tree) : CordRepBtree::New(result.tree, tree); if (ABSL_PREDICT_FALSE(tree->height() > CordRepBtree::kMaxHeight)) { tree = CordRepBtree::Rebuild(tree); ABSL_RAW_CHECK(tree->height() <= CordRepBtree::kMaxHeight, "Max height exceeded"); } return tree; case CordRepBtree::kCopied: CordRep::Unref(tree); ABSL_FALLTHROUGH_INTENDED; case CordRepBtree::kSelf: return result.tree; } ABSL_UNREACHABLE(); return result.tree; } // Propagate the action result in 'result' up into all nodes of the stack // starting at depth 'depth'. 'length' contains the extra length of data that // was added at the lowest level, and is updated into all nodes of the stack. // See the 'Action' enum for the various action implications. // If 'propagate' is true, then any copied node values are updated into the // stack, which is used for iterative processing on the same stack. template inline CordRepBtree* Unwind(CordRepBtree* tree, int depth, size_t length, OpResult result) { // TODO(mvels): revisit the below code to check if 3 loops with 3 // (incremental) conditions is faster than 1 loop with a switch. // Benchmarking and perf recordings indicate the loop with switch is // fastest, likely because of indirect jumps on the tight case values and // dense branches. But it's worth considering 3 loops, as the `action` // transitions are mono directional. E.g.: // while (action == kPopped) { // ... // } // while (action == kCopied) { // ... // } // ... // We also found that an "if () do {}" loop here seems faster, possibly // because it allows the branch predictor more granular heuristics on // 'single leaf' (`depth` == 0) and 'single depth' (`depth` == 1) cases // which appear to be the most common use cases. if (depth != 0) { do { CordRepBtree* node = stack[--depth]; const bool owned = depth < share_depth; switch (result.action) { case CordRepBtree::kPopped: assert(!propagate); result = node->AddEdge(owned, result.tree, length); break; case CordRepBtree::kCopied: result = node->SetEdge(owned, result.tree, length); if (propagate) stack[depth] = result.tree; break; case CordRepBtree::kSelf: node->length += length; while (depth > 0) { node = stack[--depth]; node->length += length; } return node; } } while (depth > 0); } return Finalize(tree, result); } // Invokes `Unwind` with `propagate=true` to update the stack node values. inline CordRepBtree* Propagate(CordRepBtree* tree, int depth, size_t length, OpResult result) { return Unwind(tree, depth, length, result); } // `share_depth` contains the depth at which the nodes in the stack become // shared. I.e., if the top most level is shared (i.e.: `!refcount.IsOne()`), // then `share_depth` is 0. If the 2nd node is shared (and implicitly all // nodes below that) then `share_depth` is 1, etc. A `share_depth` greater // than the depth of the stack indicates that none of the nodes in the stack // are shared. int share_depth; NodeStack stack; }; } // namespace void SetCordBtreeExhaustiveValidation(bool do_exaustive_validation) { cord_btree_exhaustive_validation.store(do_exaustive_validation, std::memory_order_relaxed); } bool IsCordBtreeExhaustiveValidationEnabled() { return cord_btree_exhaustive_validation.load(std::memory_order_relaxed); } void CordRepBtree::Dump(const CordRep* rep, absl::string_view label, bool include_contents, std::ostream& stream) { stream << "===================================\n"; if (!label.empty()) { stream << label << '\n'; stream << "-----------------------------------\n"; } if (rep) { DumpAll(rep, include_contents, stream); } else { stream << "NULL\n"; } } void CordRepBtree::Dump(const CordRep* rep, absl::string_view label, std::ostream& stream) { Dump(rep, label, false, stream); } void CordRepBtree::Dump(const CordRep* rep, std::ostream& stream) { Dump(rep, absl::string_view(), false, stream); } template static void DestroyTree(CordRepBtree* tree) { for (CordRep* node : tree->Edges()) { if (node->refcount.Decrement()) continue; for (CordRep* edge : node->btree()->Edges()) { if (edge->refcount.Decrement()) continue; if (size == 1) { DeleteLeafEdge(edge); } else { CordRepBtree::Destroy(edge->btree()); } } CordRepBtree::Delete(node->btree()); } CordRepBtree::Delete(tree); } void CordRepBtree::Destroy(CordRepBtree* tree) { switch (tree->height()) { case 0: for (CordRep* edge : tree->Edges()) { if (!edge->refcount.Decrement()) { DeleteLeafEdge(edge); } } return CordRepBtree::Delete(tree); case 1: return DestroyTree<1>(tree); default: return DestroyTree<2>(tree); } } bool CordRepBtree::IsValid(const CordRepBtree* tree, bool shallow) { #define NODE_CHECK_VALID(x) \ if (!(x)) { \ ABSL_RAW_LOG(ERROR, "CordRepBtree::CheckValid() FAILED: %s", #x); \ return false; \ } #define NODE_CHECK_EQ(x, y) \ if ((x) != (y)) { \ ABSL_RAW_LOG(ERROR, \ "CordRepBtree::CheckValid() FAILED: %s != %s (%s vs %s)", #x, \ #y, absl::StrCat(x).c_str(), absl::StrCat(y).c_str()); \ return false; \ } NODE_CHECK_VALID(tree != nullptr); NODE_CHECK_VALID(tree->IsBtree()); NODE_CHECK_VALID(tree->height() <= kMaxHeight); NODE_CHECK_VALID(tree->begin() < tree->capacity()); NODE_CHECK_VALID(tree->end() <= tree->capacity()); NODE_CHECK_VALID(tree->begin() <= tree->end()); size_t child_length = 0; for (CordRep* edge : tree->Edges()) { NODE_CHECK_VALID(edge != nullptr); if (tree->height() > 0) { NODE_CHECK_VALID(edge->IsBtree()); NODE_CHECK_VALID(edge->btree()->height() == tree->height() - 1); } else { NODE_CHECK_VALID(IsDataEdge(edge)); } child_length += edge->length; } NODE_CHECK_EQ(child_length, tree->length); if ((!shallow || IsCordBtreeExhaustiveValidationEnabled()) && tree->height() > 0) { for (CordRep* edge : tree->Edges()) { if (!IsValid(edge->btree(), shallow)) return false; } } return true; #undef NODE_CHECK_VALID #undef NODE_CHECK_EQ } #ifndef NDEBUG CordRepBtree* CordRepBtree::AssertValid(CordRepBtree* tree, bool shallow) { if (!IsValid(tree, shallow)) { Dump(tree, "CordRepBtree validation failed:", false, std::cout); ABSL_RAW_LOG(FATAL, "CordRepBtree::CheckValid() FAILED"); } return tree; } const CordRepBtree* CordRepBtree::AssertValid(const CordRepBtree* tree, bool shallow) { if (!IsValid(tree, shallow)) { Dump(tree, "CordRepBtree validation failed:", false, std::cout); ABSL_RAW_LOG(FATAL, "CordRepBtree::CheckValid() FAILED"); } return tree; } #endif // NDEBUG template inline OpResult CordRepBtree::AddEdge(bool owned, CordRep* edge, size_t delta) { if (size() >= kMaxCapacity) return {New(edge), kPopped}; OpResult result = ToOpResult(owned); result.tree->Add(edge); result.tree->length += delta; return result; } template OpResult CordRepBtree::SetEdge(bool owned, CordRep* edge, size_t delta) { OpResult result; const size_t idx = index(edge_type); if (owned) { result = {this, kSelf}; CordRep::Unref(edges_[idx]); } else { // Create a copy containing all unchanged edges. Unchanged edges are the // open interval [begin, back) or [begin + 1, end) depending on `edge_type`. // We conveniently cover both case using a constexpr `shift` being 0 or 1 // as `end :== back + 1`. result = {CopyRaw(length), kCopied}; constexpr int shift = edge_type == kFront ? 1 : 0; for (CordRep* r : Edges(begin() + shift, back() + shift)) { CordRep::Ref(r); } } result.tree->edges_[idx] = edge; result.tree->length += delta; return result; } template CordRepBtree* CordRepBtree::AddCordRep(CordRepBtree* tree, CordRep* rep) { const int depth = tree->height(); const size_t length = rep->length; StackOperations ops; CordRepBtree* leaf = ops.BuildStack(tree, depth); const OpResult result = leaf->AddEdge(ops.owned(depth), rep, length); return ops.Unwind(tree, depth, length, result); } template <> CordRepBtree* CordRepBtree::NewLeaf(absl::string_view data, size_t extra) { CordRepBtree* leaf = CordRepBtree::New(0); size_t length = 0; size_t end = 0; const size_t cap = leaf->capacity(); while (!data.empty() && end != cap) { auto* flat = CordRepFlat::New(data.length() + extra); flat->length = (std::min)(data.length(), flat->Capacity()); length += flat->length; leaf->edges_[end++] = flat; data = Consume(flat->Data(), data, flat->length); } leaf->length = length; leaf->set_end(end); return leaf; } template <> CordRepBtree* CordRepBtree::NewLeaf(absl::string_view data, size_t extra) { CordRepBtree* leaf = CordRepBtree::New(0); size_t length = 0; size_t begin = leaf->capacity(); leaf->set_end(leaf->capacity()); while (!data.empty() && begin != 0) { auto* flat = CordRepFlat::New(data.length() + extra); flat->length = (std::min)(data.length(), flat->Capacity()); length += flat->length; leaf->edges_[--begin] = flat; data = Consume(flat->Data(), data, flat->length); } leaf->length = length; leaf->set_begin(begin); return leaf; } template <> absl::string_view CordRepBtree::AddData(absl::string_view data, size_t extra) { assert(!data.empty()); assert(size() < capacity()); AlignBegin(); const size_t cap = capacity(); do { CordRepFlat* flat = CordRepFlat::New(data.length() + extra); const size_t n = (std::min)(data.length(), flat->Capacity()); flat->length = n; edges_[fetch_add_end(1)] = flat; data = Consume(flat->Data(), data, n); } while (!data.empty() && end() != cap); return data; } template <> absl::string_view CordRepBtree::AddData(absl::string_view data, size_t extra) { assert(!data.empty()); assert(size() < capacity()); AlignEnd(); do { CordRepFlat* flat = CordRepFlat::New(data.length() + extra); const size_t n = (std::min)(data.length(), flat->Capacity()); flat->length = n; edges_[sub_fetch_begin(1)] = flat; data = Consume(flat->Data(), data, n); } while (!data.empty() && begin() != 0); return data; } template CordRepBtree* CordRepBtree::AddData(CordRepBtree* tree, absl::string_view data, size_t extra) { if (ABSL_PREDICT_FALSE(data.empty())) return tree; const size_t original_data_size = data.size(); int depth = tree->height(); StackOperations ops; CordRepBtree* leaf = ops.BuildStack(tree, depth); // If there is capacity in the last edge, append as much data // as possible into this last edge. if (leaf->size() < leaf->capacity()) { OpResult result = leaf->ToOpResult(ops.owned(depth)); data = result.tree->AddData(data, extra); if (data.empty()) { result.tree->length += original_data_size; return ops.Unwind(tree, depth, original_data_size, result); } // We added some data into this leaf, but not all. Propagate the added // length to the top most node, and rebuild the stack with any newly copied // or updated nodes. From this point on, the path (leg) from the top most // node to the right-most node towards the leaf node is privately owned. size_t delta = original_data_size - data.size(); assert(delta > 0); result.tree->length += delta; tree = ops.Propagate(tree, depth, delta, result); ops.share_depth = depth + 1; } // We were unable to append all data into the existing right-most leaf node. // This means all remaining data must be put into (a) new leaf node(s) which // we append to the tree. To make this efficient, we iteratively build full // leaf nodes from `data` until the created leaf contains all remaining data. // We utilize the `Unwind` method to merge the created leaf into the first // level towards root that has capacity. On each iteration with remaining // data, we rebuild the stack in the knowledge that right-most nodes are // privately owned after the first `Unwind` completes. for (;;) { OpResult result = {CordRepBtree::NewLeaf(data, extra), kPopped}; if (result.tree->length == data.size()) { return ops.Unwind(tree, depth, result.tree->length, result); } data = Consume(data, result.tree->length); tree = ops.Unwind(tree, depth, result.tree->length, result); depth = tree->height(); ops.BuildOwnedStack(tree, depth); } } template CordRepBtree* CordRepBtree::Merge(CordRepBtree* dst, CordRepBtree* src) { assert(dst->height() >= src->height()); // Capture source length as we may consume / destroy `src`. const size_t length = src->length; // We attempt to merge `src` at its corresponding height in `dst`. const int depth = dst->height() - src->height(); StackOperations ops; CordRepBtree* merge_node = ops.BuildStack(dst, depth); // If there is enough space in `merge_node` for all edges from `src`, add all // edges to this node, making a fresh copy as needed if not privately owned. // If `merge_node` does not have capacity for `src`, we rely on `Unwind` and // `Finalize` to merge `src` into the first level towards `root` where there // is capacity for another edge, or create a new top level node. OpResult result; if (merge_node->size() + src->size() <= kMaxCapacity) { result = merge_node->ToOpResult(ops.owned(depth)); result.tree->Add(src->Edges()); result.tree->length += src->length; if (src->refcount.IsOne()) { Delete(src); } else { for (CordRep* edge : src->Edges()) CordRep::Ref(edge); CordRepBtree::Unref(src); } } else { result = {src, kPopped}; } // Unless we merged at the top level (i.e.: src and dst are equal height), // unwind the result towards the top level, and finalize the result. if (depth) { return ops.Unwind(dst, depth, length, result); } return ops.Finalize(dst, result); } CopyResult CordRepBtree::CopySuffix(size_t offset) { assert(offset < this->length); // As long as `offset` starts inside the last edge, we can 'drop' the current // depth. For the most extreme example: if offset references the last data // edge in the tree, there is only a single edge / path from the top of the // tree to that last edge, so we can drop all the nodes except that edge. // The fast path check for this is `back->length >= length - offset`. int height = this->height(); CordRepBtree* node = this; size_t len = node->length - offset; CordRep* back = node->Edge(kBack); while (back->length >= len) { offset = back->length - len; if (--height < 0) { return {MakeSubstring(CordRep::Ref(back), offset), height}; } node = back->btree(); back = node->Edge(kBack); } if (offset == 0) return {CordRep::Ref(node), height}; // Offset does not point into the last edge, so we span at least two edges. // Find the index of offset with `IndexBeyond` which provides us the edge // 'beyond' the offset if offset is not a clean starting point of an edge. Position pos = node->IndexBeyond(offset); CordRepBtree* sub = node->CopyToEndFrom(pos.index, len); const CopyResult result = {sub, height}; // `pos.n` contains a non zero value if the offset is not an exact starting // point of an edge. In this case, `pos.n` contains the 'trailing' amount of // bytes of the edge preceding that in `pos.index`. We need to iteratively // adjust the preceding edge with the 'broken' offset until we have a perfect // start of the edge. while (pos.n != 0) { assert(pos.index >= 1); const size_t begin = pos.index - 1; sub->set_begin(begin); CordRep* const edge = node->Edge(begin); len = pos.n; offset = edge->length - len; if (--height < 0) { sub->edges_[begin] = MakeSubstring(CordRep::Ref(edge), offset, len); return result; } node = edge->btree(); pos = node->IndexBeyond(offset); CordRepBtree* nsub = node->CopyToEndFrom(pos.index, len); sub->edges_[begin] = nsub; sub = nsub; } sub->set_begin(pos.index); return result; } CopyResult CordRepBtree::CopyPrefix(size_t n, bool allow_folding) { assert(n > 0); assert(n <= this->length); // As long as `n` does not exceed the length of the first edge, we can 'drop' // the current depth. For the most extreme example: if we'd copy a 1 byte // prefix from a tree, there is only a single edge / path from the top of the // tree to the single data edge containing this byte, so we can drop all the // nodes except the data node. int height = this->height(); CordRepBtree* node = this; CordRep* front = node->Edge(kFront); if (allow_folding) { while (front->length >= n) { if (--height < 0) return {MakeSubstring(CordRep::Ref(front), 0, n), -1}; node = front->btree(); front = node->Edge(kFront); } } if (node->length == n) return {CordRep::Ref(node), height}; // `n` spans at least two nodes, find the end point of the span. Position pos = node->IndexOf(n); // Create a partial copy of the node up to `pos.index`, with a defined length // of `n`. Any 'partial last edge' is added further below as needed. CordRepBtree* sub = node->CopyBeginTo(pos.index, n); const CopyResult result = {sub, height}; // `pos.n` contains the 'offset inside the edge for IndexOf(n)'. As long as // this is not zero, we don't have a 'clean cut', so we need to make a // (partial) copy of that last edge, and repeat this until pos.n is zero. while (pos.n != 0) { size_t end = pos.index; n = pos.n; CordRep* edge = node->Edge(pos.index); if (--height < 0) { sub->edges_[end++] = MakeSubstring(CordRep::Ref(edge), 0, n); sub->set_end(end); AssertValid(result.edge->btree()); return result; } node = edge->btree(); pos = node->IndexOf(n); CordRepBtree* nsub = node->CopyBeginTo(pos.index, n); sub->edges_[end++] = nsub; sub->set_end(end); sub = nsub; } sub->set_end(pos.index); AssertValid(result.edge->btree()); return result; } CordRep* CordRepBtree::ExtractFront(CordRepBtree* tree) { CordRep* front = tree->Edge(tree->begin()); if (tree->refcount.IsOne()) { Unref(tree->Edges(tree->begin() + 1, tree->end())); CordRepBtree::Delete(tree); } else { CordRep::Ref(front); CordRep::Unref(tree); } return front; } CordRepBtree* CordRepBtree::ConsumeBeginTo(CordRepBtree* tree, size_t end, size_t new_length) { assert(end <= tree->end()); if (tree->refcount.IsOne()) { Unref(tree->Edges(end, tree->end())); tree->set_end(end); tree->length = new_length; } else { CordRepBtree* old = tree; tree = tree->CopyBeginTo(end, new_length); CordRep::Unref(old); } return tree; } CordRep* CordRepBtree::RemoveSuffix(CordRepBtree* tree, size_t n) { // Check input and deal with trivial cases 'Remove all/none' assert(tree != nullptr); assert(n <= tree->length); const size_t len = tree->length; if (ABSL_PREDICT_FALSE(n == 0)) { return tree; } if (ABSL_PREDICT_FALSE(n >= len)) { CordRepBtree::Unref(tree); return nullptr; } size_t length = len - n; int height = tree->height(); bool is_mutable = tree->refcount.IsOne(); // Extract all top nodes which are reduced to size = 1 Position pos = tree->IndexOfLength(length); while (pos.index == tree->begin()) { CordRep* edge = ExtractFront(tree); is_mutable &= edge->refcount.IsOne(); if (height-- == 0) return ResizeEdge(edge, length, is_mutable); tree = edge->btree(); pos = tree->IndexOfLength(length); } // Repeat the following sequence traversing down the tree: // - Crop the top node to the 'last remaining edge' adjusting length. // - Set the length for down edges to the partial length in that last edge. // - Repeat this until the last edge is 'included in full' // - If we hit the data edge level, resize and return the last data edge CordRepBtree* top = tree = ConsumeBeginTo(tree, pos.index + 1, length); CordRep* edge = tree->Edge(pos.index); length = pos.n; while (length != edge->length) { // ConsumeBeginTo guarantees `tree` is a clean, privately owned copy. assert(tree->refcount.IsOne()); const bool edge_is_mutable = edge->refcount.IsOne(); if (height-- == 0) { tree->edges_[pos.index] = ResizeEdge(edge, length, edge_is_mutable); return AssertValid(top); } if (!edge_is_mutable) { // We can't 'in place' remove any suffixes down this edge. // Replace this edge with a prefix copy instead. tree->edges_[pos.index] = edge->btree()->CopyPrefix(length, false).edge; CordRep::Unref(edge); return AssertValid(top); } // Move down one level, rinse repeat. tree = edge->btree(); pos = tree->IndexOfLength(length); tree = ConsumeBeginTo(edge->btree(), pos.index + 1, length); edge = tree->Edge(pos.index); length = pos.n; } return AssertValid(top); } CordRep* CordRepBtree::SubTree(size_t offset, size_t n) { assert(n <= this->length); assert(offset <= this->length - n); if (ABSL_PREDICT_FALSE(n == 0)) return nullptr; CordRepBtree* node = this; int height = node->height(); Position front = node->IndexOf(offset); CordRep* left = node->edges_[front.index]; while (front.n + n <= left->length) { if (--height < 0) return MakeSubstring(CordRep::Ref(left), front.n, n); node = left->btree(); front = node->IndexOf(front.n); left = node->edges_[front.index]; } const Position back = node->IndexBefore(front, n); CordRep* const right = node->edges_[back.index]; assert(back.index > front.index); // Get partial suffix and prefix entries. CopyResult prefix; CopyResult suffix; if (height > 0) { // Copy prefix and suffix of the boundary nodes. prefix = left->btree()->CopySuffix(front.n); suffix = right->btree()->CopyPrefix(back.n); // If there is an edge between the prefix and suffix edges, then the tree // must remain at its previous (full) height. If we have no edges between // prefix and suffix edges, then the tree must be as high as either the // suffix or prefix edges (which are collapsed to their minimum heights). if (front.index + 1 == back.index) { height = (std::max)(prefix.height, suffix.height) + 1; } // Raise prefix and suffixes to the new tree height. for (int h = prefix.height + 1; h < height; ++h) { prefix.edge = CordRepBtree::New(prefix.edge); } for (int h = suffix.height + 1; h < height; ++h) { suffix.edge = CordRepBtree::New(suffix.edge); } } else { // Leaf node, simply take substrings for prefix and suffix. prefix = CopyResult{MakeSubstring(CordRep::Ref(left), front.n), -1}; suffix = CopyResult{MakeSubstring(CordRep::Ref(right), 0, back.n), -1}; } // Compose resulting tree. CordRepBtree* sub = CordRepBtree::New(height); size_t end = 0; sub->edges_[end++] = prefix.edge; for (CordRep* r : node->Edges(front.index + 1, back.index)) { sub->edges_[end++] = CordRep::Ref(r); } sub->edges_[end++] = suffix.edge; sub->set_end(end); sub->length = n; return AssertValid(sub); } CordRepBtree* CordRepBtree::MergeTrees(CordRepBtree* left, CordRepBtree* right) { return left->height() >= right->height() ? Merge(left, right) : Merge(right, left); } bool CordRepBtree::IsFlat(absl::string_view* fragment) const { if (height() == 0 && size() == 1) { if (fragment) *fragment = Data(begin()); return true; } return false; } bool CordRepBtree::IsFlat(size_t offset, const size_t n, absl::string_view* fragment) const { assert(n <= this->length); assert(offset <= this->length - n); if (ABSL_PREDICT_FALSE(n == 0)) return false; int height = this->height(); const CordRepBtree* node = this; for (;;) { const Position front = node->IndexOf(offset); const CordRep* edge = node->Edge(front.index); if (edge->length < front.n + n) return false; if (--height < 0) { if (fragment) *fragment = EdgeData(edge).substr(front.n, n); return true; } offset = front.n; node = node->Edge(front.index)->btree(); } } char CordRepBtree::GetCharacter(size_t offset) const { assert(offset < length); const CordRepBtree* node = this; int height = node->height(); for (;;) { Position front = node->IndexOf(offset); if (--height < 0) return node->Data(front.index)[front.n]; offset = front.n; node = node->Edge(front.index)->btree(); } } Span CordRepBtree::GetAppendBufferSlow(size_t size) { // The inlined version in `GetAppendBuffer()` deals with all heights <= 3. assert(height() >= 4); assert(refcount.IsOne()); // Build a stack of nodes we may potentially need to update if we find a // non-shared FLAT with capacity at the leaf level. const int depth = height(); CordRepBtree* node = this; CordRepBtree* stack[kMaxDepth]; for (int i = 0; i < depth; ++i) { node = node->Edge(kBack)->btree(); if (!node->refcount.IsOne()) return {}; stack[i] = node; } // Must be a privately owned, mutable flat. CordRep* const edge = node->Edge(kBack); if (!edge->refcount.IsOne() || edge->tag < FLAT) return {}; // Must have capacity. const size_t avail = edge->flat()->Capacity() - edge->length; if (avail == 0) return {}; // Build span on remaining capacity. size_t delta = (std::min)(size, avail); Span span = {edge->flat()->Data() + edge->length, delta}; edge->length += delta; this->length += delta; for (int i = 0; i < depth; ++i) { stack[i]->length += delta; } return span; } CordRepBtree* CordRepBtree::CreateSlow(CordRep* rep) { if (rep->IsBtree()) return rep->btree(); CordRepBtree* node = nullptr; auto consume = [&node](CordRep* r, size_t offset, size_t length) { r = MakeSubstring(r, offset, length); if (node == nullptr) { node = New(r); } else { node = CordRepBtree::AddCordRep(node, r); } }; Consume(rep, consume); return node; } CordRepBtree* CordRepBtree::AppendSlow(CordRepBtree* tree, CordRep* rep) { if (ABSL_PREDICT_TRUE(rep->IsBtree())) { return MergeTrees(tree, rep->btree()); } auto consume = [&tree](CordRep* r, size_t offset, size_t length) { r = MakeSubstring(r, offset, length); tree = CordRepBtree::AddCordRep(tree, r); }; Consume(rep, consume); return tree; } CordRepBtree* CordRepBtree::PrependSlow(CordRepBtree* tree, CordRep* rep) { if (ABSL_PREDICT_TRUE(rep->IsBtree())) { return MergeTrees(rep->btree(), tree); } auto consume = [&tree](CordRep* r, size_t offset, size_t length) { r = MakeSubstring(r, offset, length); tree = CordRepBtree::AddCordRep(tree, r); }; ReverseConsume(rep, consume); return tree; } CordRepBtree* CordRepBtree::Append(CordRepBtree* tree, absl::string_view data, size_t extra) { return CordRepBtree::AddData(tree, data, extra); } CordRepBtree* CordRepBtree::Prepend(CordRepBtree* tree, absl::string_view data, size_t extra) { return CordRepBtree::AddData(tree, data, extra); } template CordRepBtree* CordRepBtree::AddCordRep(CordRepBtree* tree, CordRep* rep); template CordRepBtree* CordRepBtree::AddCordRep(CordRepBtree* tree, CordRep* rep); template CordRepBtree* CordRepBtree::AddData(CordRepBtree* tree, absl::string_view data, size_t extra); template CordRepBtree* CordRepBtree::AddData(CordRepBtree* tree, absl::string_view data, size_t extra); void CordRepBtree::Rebuild(CordRepBtree** stack, CordRepBtree* tree, bool consume) { bool owned = consume && tree->refcount.IsOne(); if (tree->height() == 0) { for (CordRep* edge : tree->Edges()) { if (!owned) edge = CordRep::Ref(edge); size_t height = 0; size_t length = edge->length; CordRepBtree* node = stack[0]; OpResult result = node->AddEdge(true, edge, length); while (result.action == CordRepBtree::kPopped) { stack[height] = result.tree; if (stack[++height] == nullptr) { result.action = CordRepBtree::kSelf; stack[height] = CordRepBtree::New(node, result.tree); } else { node = stack[height]; result = node->AddEdge(true, result.tree, length); } } while (stack[++height] != nullptr) { stack[height]->length += length; } } } else { for (CordRep* rep : tree->Edges()) { Rebuild(stack, rep->btree(), owned); } } if (consume) { if (owned) { CordRepBtree::Delete(tree); } else { CordRepBtree::Unref(tree); } } } CordRepBtree* CordRepBtree::Rebuild(CordRepBtree* tree) { // Set up initial stack with empty leaf node. CordRepBtree* node = CordRepBtree::New(); CordRepBtree* stack[CordRepBtree::kMaxDepth + 1] = {node}; // Recursively build the tree, consuming the input tree. Rebuild(stack, tree, /* consume reference */ true); // Return top most node for (CordRepBtree* parent : stack) { if (parent == nullptr) return node; node = parent; } // Unreachable assert(false); return nullptr; } CordRepBtree::ExtractResult CordRepBtree::ExtractAppendBuffer( CordRepBtree* tree, size_t extra_capacity) { int depth = 0; NodeStack stack; // Set up default 'no success' result which is {tree, nullptr}. ExtractResult result; result.tree = tree; result.extracted = nullptr; // Dive down the right side of the tree, making sure no edges are shared. while (tree->height() > 0) { if (!tree->refcount.IsOne()) return result; stack[depth++] = tree; tree = tree->Edge(kBack)->btree(); } if (!tree->refcount.IsOne()) return result; // Validate we ended on a non shared flat. CordRep* rep = tree->Edge(kBack); if (!(rep->IsFlat() && rep->refcount.IsOne())) return result; // Verify it has at least the requested extra capacity. CordRepFlat* flat = rep->flat(); const size_t length = flat->length; const size_t avail = flat->Capacity() - flat->length; if (extra_capacity > avail) return result; // Set the extracted flat in the result. result.extracted = flat; // Cascading delete all nodes that become empty. while (tree->size() == 1) { CordRepBtree::Delete(tree); if (--depth < 0) { // We consumed the entire tree: return nullptr for new tree. result.tree = nullptr; return result; } rep = tree; tree = stack[depth]; } // Remove the edge or cascaded up parent node. tree->set_end(tree->end() - 1); tree->length -= length; // Adjust lengths up the tree. while (depth > 0) { tree = stack[--depth]; tree->length -= length; } // Remove unnecessary top nodes with size = 1. This may iterate all the way // down to the leaf node in which case we simply return the remaining last // edge in that node and the extracted flat. while (tree->size() == 1) { int height = tree->height(); rep = tree->Edge(kBack); Delete(tree); if (height == 0) { // We consumed the leaf: return the sole data edge as the new tree. result.tree = rep; return result; } tree = rep->btree(); } // Done: return the (new) top level node and extracted flat. result.tree = tree; return result; } } // namespace cord_internal ABSL_NAMESPACE_END } // namespace absl