// Copyright 2021 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_ #define ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_ #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/endian.h" #include "absl/base/internal/invoke.h" #include "absl/base/optimization.h" #include "absl/container/internal/compressed_tuple.h" #include "absl/meta/type_traits.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { // The overhead of a vtable is too much for Cord, so we roll our own subclasses // using only a single byte to differentiate classes from each other - the "tag" // byte. Define the subclasses first so we can provide downcasting helper // functions in the base class. struct CordRep; struct CordRepConcat; struct CordRepExternal; struct CordRepFlat; struct CordRepSubstring; struct CordRepCrc; class CordRepRing; class CordRepBtree; class CordzInfo; // Default feature enable states for cord ring buffers enum CordFeatureDefaults { kCordEnableRingBufferDefault = false, kCordShallowSubcordsDefault = false }; extern std::atomic cord_ring_buffer_enabled; extern std::atomic shallow_subcords_enabled; // `cord_btree_exhaustive_validation` can be set to force exhaustive validation // in debug assertions, and code that calls `IsValid()` explicitly. By default, // assertions should be relatively cheap and AssertValid() can easily lead to // O(n^2) complexity as recursive / full tree validation is O(n). extern std::atomic cord_btree_exhaustive_validation; inline void enable_cord_ring_buffer(bool enable) { cord_ring_buffer_enabled.store(enable, std::memory_order_relaxed); } inline void enable_shallow_subcords(bool enable) { shallow_subcords_enabled.store(enable, std::memory_order_relaxed); } enum Constants { // The inlined size to use with absl::InlinedVector. // // Note: The InlinedVectors in this file (and in cord.h) do not need to use // the same value for their inlined size. The fact that they do is historical. // It may be desirable for each to use a different inlined size optimized for // that InlinedVector's usage. // // TODO(jgm): Benchmark to see if there's a more optimal value than 47 for // the inlined vector size (47 exists for backward compatibility). kInlinedVectorSize = 47, // Prefer copying blocks of at most this size, otherwise reference count. kMaxBytesToCopy = 511 }; // Emits a fatal error "Unexpected node type: xyz" and aborts the program. ABSL_ATTRIBUTE_NORETURN void LogFatalNodeType(CordRep* rep); // Fast implementation of memmove for up to 15 bytes. This implementation is // safe for overlapping regions. If nullify_tail is true, the destination is // padded with '\0' up to 15 bytes. template inline void SmallMemmove(char* dst, const char* src, size_t n) { if (n >= 8) { assert(n <= 15); uint64_t buf1; uint64_t buf2; memcpy(&buf1, src, 8); memcpy(&buf2, src + n - 8, 8); if (nullify_tail) { memset(dst + 7, 0, 8); } memcpy(dst, &buf1, 8); memcpy(dst + n - 8, &buf2, 8); } else if (n >= 4) { uint32_t buf1; uint32_t buf2; memcpy(&buf1, src, 4); memcpy(&buf2, src + n - 4, 4); if (nullify_tail) { memset(dst + 4, 0, 4); memset(dst + 7, 0, 8); } memcpy(dst, &buf1, 4); memcpy(dst + n - 4, &buf2, 4); } else { if (n != 0) { dst[0] = src[0]; dst[n / 2] = src[n / 2]; dst[n - 1] = src[n - 1]; } if (nullify_tail) { memset(dst + 7, 0, 8); memset(dst + n, 0, 8); } } } // Compact class for tracking the reference count and state flags for CordRep // instances. Data is stored in an atomic int32_t for compactness and speed. class RefcountAndFlags { public: constexpr RefcountAndFlags() : count_{kRefIncrement} {} struct Immortal {}; explicit constexpr RefcountAndFlags(Immortal) : count_(kImmortalFlag) {} // Increments the reference count. Imposes no memory ordering. inline void Increment() { count_.fetch_add(kRefIncrement, std::memory_order_relaxed); } // Asserts that the current refcount is greater than 0. If the refcount is // greater than 1, decrements the reference count. // // Returns false if there are no references outstanding; true otherwise. // Inserts barriers to ensure that state written before this method returns // false will be visible to a thread that just observed this method returning // false. Always returns false when the immortal bit is set. inline bool Decrement() { int32_t refcount = count_.load(std::memory_order_acquire) & kRefcountMask; assert(refcount > 0 || refcount & kImmortalFlag); return refcount != kRefIncrement && (count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) & kRefcountMask) != kRefIncrement; } // Same as Decrement but expect that refcount is greater than 1. inline bool DecrementExpectHighRefcount() { int32_t refcount = count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) & kRefcountMask; assert(refcount > 0 || refcount & kImmortalFlag); return refcount != kRefIncrement; } // Returns the current reference count using acquire semantics. inline size_t Get() const { return static_cast(count_.load(std::memory_order_acquire) >> kNumFlags); } // Returns whether the atomic integer is 1. // If the reference count is used in the conventional way, a // reference count of 1 implies that the current thread owns the // reference and no other thread shares it. // This call performs the test for a reference count of one, and // performs the memory barrier needed for the owning thread // to act on the object, knowing that it has exclusive access to the // object. Always returns false when the immortal bit is set. inline bool IsOne() { return (count_.load(std::memory_order_acquire) & kRefcountMask) == kRefIncrement; } bool IsImmortal() const { return (count_.load(std::memory_order_relaxed) & kImmortalFlag) != 0; } private: // We reserve the bottom bits for flags. // kImmortalBit indicates that this entity should never be collected; it is // used for the StringConstant constructor to avoid collecting immutable // constant cords. // kReservedFlag is reserved for future use. enum Flags { kNumFlags = 2, kImmortalFlag = 0x1, kReservedFlag = 0x2, kRefIncrement = (1 << kNumFlags), // Bitmask to use when checking refcount by equality. This masks out // all flags except kImmortalFlag, which is part of the refcount for // purposes of equality. (A refcount of 0 or 1 does not count as 0 or 1 // if the immortal bit is set.) kRefcountMask = ~kReservedFlag, }; std::atomic count_; }; // Various representations that we allow enum CordRepKind { UNUSED_0 = 0, SUBSTRING = 1, CRC = 2, BTREE = 3, RING = 4, EXTERNAL = 5, // We have different tags for different sized flat arrays, // starting with FLAT, and limited to MAX_FLAT_TAG. The below values map to an // allocated range of 32 bytes to 256 KB. The current granularity is: // - 8 byte granularity for flat sizes in [32 - 512] // - 64 byte granularity for flat sizes in (512 - 8KiB] // - 4KiB byte granularity for flat sizes in (8KiB, 256 KiB] // If a new tag is needed in the future, then 'FLAT' and 'MAX_FLAT_TAG' should // be adjusted as well as the Tag <---> Size mapping logic so that FLAT still // represents the minimum flat allocation size. (32 bytes as of now). FLAT = 6, MAX_FLAT_TAG = 248 }; // There are various locations where we want to check if some rep is a 'plain' // data edge, i.e. an external or flat rep. By having FLAT == EXTERNAL + 1, we // can perform this check in a single branch as 'tag >= EXTERNAL' // Likewise, we have some locations where we check for 'ring or external/flat', // so likewise align RING to EXTERNAL. // Note that we can leave this optimization to the compiler. The compiler will // DTRT when it sees a condition like `tag == EXTERNAL || tag >= FLAT`. static_assert(RING == BTREE + 1, "BTREE and RING not consecutive"); static_assert(EXTERNAL == RING + 1, "BTREE and EXTERNAL not consecutive"); static_assert(FLAT == EXTERNAL + 1, "EXTERNAL and FLAT not consecutive"); struct CordRep { // Result from an `extract edge` operation. Contains the (possibly changed) // tree node as well as the extracted edge, or {tree, nullptr} if no edge // could be extracted. // On success, the returned `tree` value is null if `extracted` was the only // data edge inside the tree, a data edge if there were only two data edges in // the tree, or the (possibly new / smaller) remaining tree with the extracted // data edge removed. struct ExtractResult { CordRep* tree; CordRep* extracted; }; CordRep() = default; constexpr CordRep(RefcountAndFlags::Immortal immortal, size_t l) : length(l), refcount(immortal), tag(EXTERNAL), storage{} {} // The following three fields have to be less than 32 bytes since // that is the smallest supported flat node size. Some code optimizations rely // on the specific layout of these fields. Notably: the non-trivial field // `refcount` being preceeded by `length`, and being tailed by POD data // members only. // # LINT.IfChange size_t length; RefcountAndFlags refcount; // If tag < FLAT, it represents CordRepKind and indicates the type of node. // Otherwise, the node type is CordRepFlat and the tag is the encoded size. uint8_t tag; // `storage` provides two main purposes: // - the starting point for FlatCordRep.Data() [flexible-array-member] // - 3 bytes of additional storage for use by derived classes. // The latter is used by CordrepConcat and CordRepBtree. CordRepConcat stores // a 'depth' value in storage[0], and the (future) CordRepBtree class stores // `height`, `begin` and `end` in the 3 entries. Otherwise we would need to // allocate room for these in the derived class, as not all compilers reuse // padding space from the base class (clang and gcc do, MSVC does not, etc) uint8_t storage[3]; // # LINT.ThenChange(cord_rep_btree.h:copy_raw) // Returns true if this instance's tag matches the requested type. constexpr bool IsRing() const { return tag == RING; } constexpr bool IsSubstring() const { return tag == SUBSTRING; } constexpr bool IsCrc() const { return tag == CRC; } constexpr bool IsExternal() const { return tag == EXTERNAL; } constexpr bool IsFlat() const { return tag >= FLAT; } constexpr bool IsBtree() const { return tag == BTREE; } inline CordRepRing* ring(); inline const CordRepRing* ring() const; inline CordRepSubstring* substring(); inline const CordRepSubstring* substring() const; inline CordRepCrc* crc(); inline const CordRepCrc* crc() const; inline CordRepExternal* external(); inline const CordRepExternal* external() const; inline CordRepFlat* flat(); inline const CordRepFlat* flat() const; inline CordRepBtree* btree(); inline const CordRepBtree* btree() const; // -------------------------------------------------------------------- // Memory management // Destroys the provided `rep`. static void Destroy(CordRep* rep); // Increments the reference count of `rep`. // Requires `rep` to be a non-null pointer value. static inline CordRep* Ref(CordRep* rep); // Decrements the reference count of `rep`. Destroys rep if count reaches // zero. Requires `rep` to be a non-null pointer value. static inline void Unref(CordRep* rep); }; struct CordRepSubstring : public CordRep { size_t start; // Starting offset of substring in child CordRep* child; // Creates a substring on `child`, adopting a reference on `child`. // Requires `child` to be either a flat or external node, and `pos` and `n` to // form a non-empty partial sub range of `'child`, i.e.: // `n > 0 && n < length && n + pos <= length` static inline CordRepSubstring* Create(CordRep* child, size_t pos, size_t n); // Creates a substring of `rep`. Does not adopt a reference on `rep`. // Requires `IsDataEdge(rep) && n > 0 && pos + n <= rep->length`. // If `n == rep->length` then this method returns `CordRep::Ref(rep)` // If `rep` is a substring of a flat or external node, then this method will // return a new substring of that flat or external node with `pos` adjusted // with the original `start` position. static inline CordRep* Substring(CordRep* rep, size_t pos, size_t n); }; // Type for function pointer that will invoke the releaser function and also // delete the `CordRepExternalImpl` corresponding to the passed in // `CordRepExternal`. using ExternalReleaserInvoker = void (*)(CordRepExternal*); // External CordReps are allocated together with a type erased releaser. The // releaser is stored in the memory directly following the CordRepExternal. struct CordRepExternal : public CordRep { CordRepExternal() = default; explicit constexpr CordRepExternal(absl::string_view str) : CordRep(RefcountAndFlags::Immortal{}, str.size()), base(str.data()), releaser_invoker(nullptr) {} const char* base; // Pointer to function that knows how to call and destroy the releaser. ExternalReleaserInvoker releaser_invoker; // Deletes (releases) the external rep. // Requires rep != nullptr and rep->IsExternal() static void Delete(CordRep* rep); }; struct Rank1 {}; struct Rank0 : Rank1 {}; template > void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) { ::absl::base_internal::invoke(std::forward(releaser), data); } template > void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) { ::absl::base_internal::invoke(std::forward(releaser)); } // We use CompressedTuple so that we can benefit from EBCO. template struct CordRepExternalImpl : public CordRepExternal, public ::absl::container_internal::CompressedTuple { // The extra int arg is so that we can avoid interfering with copy/move // constructors while still benefitting from perfect forwarding. template CordRepExternalImpl(T&& releaser, int) : CordRepExternalImpl::CompressedTuple(std::forward(releaser)) { this->releaser_invoker = &Release; } ~CordRepExternalImpl() { InvokeReleaser(Rank0{}, std::move(this->template get<0>()), absl::string_view(base, length)); } static void Release(CordRepExternal* rep) { delete static_cast(rep); } }; inline CordRepSubstring* CordRepSubstring::Create(CordRep* child, size_t pos, size_t n) { assert(child != nullptr); assert(n > 0); assert(n < child->length); assert(pos < child->length); assert(n <= child->length - pos); // TODO(b/217376272): Harden internal logic. // Move to strategical places inside the Cord logic and make this an assert. if (ABSL_PREDICT_FALSE(!(child->IsExternal() || child->IsFlat()))) { LogFatalNodeType(child); } CordRepSubstring* rep = new CordRepSubstring(); rep->length = n; rep->tag = SUBSTRING; rep->start = pos; rep->child = child; return rep; } inline CordRep* CordRepSubstring::Substring(CordRep* rep, size_t pos, size_t n) { assert(rep != nullptr); assert(n != 0); assert(pos < rep->length); assert(n <= rep->length - pos); if (n == rep->length) return CordRep::Ref(rep); if (rep->IsSubstring()) { pos += rep->substring()->start; rep = rep->substring()->child; } CordRepSubstring* substr = new CordRepSubstring(); substr->length = n; substr->tag = SUBSTRING; substr->start = pos; substr->child = CordRep::Ref(rep); return substr; } inline void CordRepExternal::Delete(CordRep* rep) { assert(rep != nullptr && rep->IsExternal()); auto* rep_external = static_cast(rep); assert(rep_external->releaser_invoker != nullptr); rep_external->releaser_invoker(rep_external); } template struct ConstInitExternalStorage { ABSL_CONST_INIT static CordRepExternal value; }; template ABSL_CONST_INIT CordRepExternal ConstInitExternalStorage::value(Str::value); enum { kMaxInline = 15, }; constexpr char GetOrNull(absl::string_view data, size_t pos) { return pos < data.size() ? data[pos] : '\0'; } // We store cordz_info as 64 bit pointer value in little endian format. This // guarantees that the least significant byte of cordz_info matches the first // byte of the inline data representation in `data`, which holds the inlined // size or the 'is_tree' bit. using cordz_info_t = int64_t; // Assert that the `cordz_info` pointer value perfectly overlaps the last half // of `data` and can hold a pointer value. static_assert(sizeof(cordz_info_t) * 2 == kMaxInline + 1, ""); static_assert(sizeof(cordz_info_t) >= sizeof(intptr_t), ""); // LittleEndianByte() creates a little endian representation of 'value', i.e.: // a little endian value where the first byte in the host's representation // holds 'value`, with all other bytes being 0. static constexpr cordz_info_t LittleEndianByte(unsigned char value) { #if defined(ABSL_IS_BIG_ENDIAN) return static_cast(value) << ((sizeof(cordz_info_t) - 1) * 8); #else return value; #endif } class InlineData { public: // DefaultInitType forces the use of the default initialization constructor. enum DefaultInitType { kDefaultInit }; // kNullCordzInfo holds the little endian representation of intptr_t(1) // This is the 'null' / initial value of 'cordz_info'. The null value // is specifically big endian 1 as with 64-bit pointers, the last // byte of cordz_info overlaps with the last byte holding the tag. static constexpr cordz_info_t kNullCordzInfo = LittleEndianByte(1); // kTagOffset contains the offset of the control byte / tag. This constant is // intended mostly for debugging purposes: do not remove this constant as it // is actively inspected and used by gdb pretty printing code. static constexpr size_t kTagOffset = 0; constexpr InlineData() = default; explicit InlineData(DefaultInitType) : rep_(kDefaultInit) {} explicit InlineData(CordRep* rep) : rep_(rep) {} // Explicit constexpr constructor to create a constexpr InlineData // value. Creates an inlined SSO value if `rep` is null, otherwise // creates a tree instance value. constexpr InlineData(absl::string_view sv, CordRep* rep) : rep_(rep ? Rep(rep) : Rep(sv)) {} constexpr InlineData(const InlineData& rhs) = default; InlineData& operator=(const InlineData& rhs) = default; friend bool operator==(const InlineData& lhs, const InlineData& rhs) { return memcmp(&lhs, &rhs, sizeof(lhs)) == 0; } friend bool operator!=(const InlineData& lhs, const InlineData& rhs) { return !operator==(lhs, rhs); } // Returns true if the current instance is empty. // The 'empty value' is an inlined data value of zero length. bool is_empty() const { return rep_.tag() == 0; } // Returns true if the current instance holds a tree value. bool is_tree() const { return (rep_.tag() & 1) != 0; } // Returns true if the current instance holds a cordz_info value. // Requires the current instance to hold a tree value. bool is_profiled() const { assert(is_tree()); return rep_.cordz_info() != kNullCordzInfo; } // Returns true if either of the provided instances hold a cordz_info value. // This method is more efficient than the equivalent `data1.is_profiled() || // data2.is_profiled()`. Requires both arguments to hold a tree. static bool is_either_profiled(const InlineData& data1, const InlineData& data2) { assert(data1.is_tree() && data2.is_tree()); return (data1.rep_.cordz_info() | data2.rep_.cordz_info()) != kNullCordzInfo; } // Returns the cordz_info sampling instance for this instance, or nullptr // if the current instance is not sampled and does not have CordzInfo data. // Requires the current instance to hold a tree value. CordzInfo* cordz_info() const { assert(is_tree()); intptr_t info = static_cast(absl::little_endian::ToHost64( static_cast(rep_.cordz_info()))); assert(info & 1); return reinterpret_cast(info - 1); } // Sets the current cordz_info sampling instance for this instance, or nullptr // if the current instance is not sampled and does not have CordzInfo data. // Requires the current instance to hold a tree value. void set_cordz_info(CordzInfo* cordz_info) { assert(is_tree()); uintptr_t info = reinterpret_cast(cordz_info) | 1; rep_.set_cordz_info( static_cast(absl::little_endian::FromHost64(info))); } // Resets the current cordz_info to null / empty. void clear_cordz_info() { assert(is_tree()); rep_.set_cordz_info(kNullCordzInfo); } // Returns a read only pointer to the character data inside this instance. // Requires the current instance to hold inline data. const char* as_chars() const { assert(!is_tree()); return rep_.as_chars(); } // Returns a mutable pointer to the character data inside this instance. // Should be used for 'write only' operations setting an inlined value. // Applications can set the value of inlined data either before or after // setting the inlined size, i.e., both of the below are valid: // // // Set inlined data and inline size // memcpy(data_.as_chars(), data, size); // data_.set_inline_size(size); // // // Set inlined size and inline data // data_.set_inline_size(size); // memcpy(data_.as_chars(), data, size); // // It's an error to read from the returned pointer without a preceding write // if the current instance does not hold inline data, i.e.: is_tree() == true. char* as_chars() { return rep_.as_chars(); } // Returns the tree value of this value. // Requires the current instance to hold a tree value. CordRep* as_tree() const { assert(is_tree()); return rep_.tree(); } void set_inline_data(const char* data, size_t n) { ABSL_ASSERT(n <= kMaxInline); rep_.set_tag(static_cast(n << 1)); SmallMemmove(rep_.as_chars(), data, n); } void copy_max_inline_to(char* dst) const { assert(!is_tree()); memcpy(dst, as_chars(), kMaxInline); } // Initialize this instance to holding the tree value `rep`, // initializing the cordz_info to null, i.e.: 'not profiled'. void make_tree(CordRep* rep) { rep_.make_tree(rep); } // Set the tree value of this instance to 'rep`. // Requires the current instance to already hold a tree value. // Does not affect the value of cordz_info. void set_tree(CordRep* rep) { assert(is_tree()); rep_.set_tree(rep); } // Returns the size of the inlined character data inside this instance. // Requires the current instance to hold inline data. size_t inline_size() const { assert(!is_tree()); return static_cast(rep_.tag()) >> 1; } // Sets the size of the inlined character data inside this instance. // Requires `size` to be <= kMaxInline. // See the documentation on 'as_chars()' for more information and examples. void set_inline_size(size_t size) { ABSL_ASSERT(size <= kMaxInline); rep_.set_tag(static_cast(size << 1)); } // Compares 'this' inlined data with rhs. The comparison is a straightforward // lexicographic comparison. `Compare()` returns values as follows: // // -1 'this' InlineData instance is smaller // 0 the InlineData instances are equal // 1 'this' InlineData instance larger int Compare(const InlineData& rhs) const { uint64_t x, y; memcpy(&x, as_chars(), sizeof(x)); memcpy(&y, rhs.as_chars(), sizeof(y)); if (x == y) { memcpy(&x, as_chars() + 7, sizeof(x)); memcpy(&y, rhs.as_chars() + 7, sizeof(y)); if (x == y) { if (inline_size() == rhs.inline_size()) return 0; return inline_size() < rhs.inline_size() ? -1 : 1; } } x = absl::big_endian::FromHost64(x); y = absl::big_endian::FromHost64(y); return x < y ? -1 : 1; } private: struct Rep { // See cordz_info_t for forced alignment and size of `cordz_info` details. struct AsTree { explicit constexpr AsTree(absl::cord_internal::CordRep* tree) : rep(tree) {} cordz_info_t cordz_info = kNullCordzInfo; absl::cord_internal::CordRep* rep; }; explicit Rep(DefaultInitType) {} constexpr Rep() : data{0} {} constexpr Rep(const Rep&) = default; constexpr Rep& operator=(const Rep&) = default; explicit constexpr Rep(CordRep* rep) : as_tree(rep) {} explicit constexpr Rep(absl::string_view chars) : data{static_cast((chars.size() << 1)), GetOrNull(chars, 0), GetOrNull(chars, 1), GetOrNull(chars, 2), GetOrNull(chars, 3), GetOrNull(chars, 4), GetOrNull(chars, 5), GetOrNull(chars, 6), GetOrNull(chars, 7), GetOrNull(chars, 8), GetOrNull(chars, 9), GetOrNull(chars, 10), GetOrNull(chars, 11), GetOrNull(chars, 12), GetOrNull(chars, 13), GetOrNull(chars, 14)} {} int8_t tag() const { return reinterpret_cast(this)[0]; } void set_tag(int8_t rhs) { reinterpret_cast(this)[0] = rhs; } char* as_chars() { return data + 1; } const char* as_chars() const { return data + 1; } CordRep* tree() const { return as_tree.rep; } void set_tree(CordRep* rhs) { as_tree.rep = rhs; } cordz_info_t cordz_info() const { return as_tree.cordz_info; } void set_cordz_info(cordz_info_t rhs) { as_tree.cordz_info = rhs; } void make_tree(CordRep* tree) { as_tree.rep = tree; as_tree.cordz_info = kNullCordzInfo; } // If the data has length <= kMaxInline, we store it in `data`, and // store the size in the first char of `data` shifted left + 1. // Else we store it in a tree and store a pointer to that tree in // `as_tree.rep` with a tagged pointer to make `tag() & 1` non zero. union { char data[kMaxInline + 1]; AsTree as_tree; }; }; Rep rep_; }; static_assert(sizeof(InlineData) == kMaxInline + 1, ""); inline CordRepSubstring* CordRep::substring() { assert(IsSubstring()); return static_cast(this); } inline const CordRepSubstring* CordRep::substring() const { assert(IsSubstring()); return static_cast(this); } inline CordRepExternal* CordRep::external() { assert(IsExternal()); return static_cast(this); } inline const CordRepExternal* CordRep::external() const { assert(IsExternal()); return static_cast(this); } inline CordRep* CordRep::Ref(CordRep* rep) { // ABSL_ASSUME is a workaround for // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105585 ABSL_ASSUME(rep != nullptr); rep->refcount.Increment(); return rep; } inline void CordRep::Unref(CordRep* rep) { assert(rep != nullptr); // Expect refcount to be 0. Avoiding the cost of an atomic decrement should // typically outweigh the cost of an extra branch checking for ref == 1. if (ABSL_PREDICT_FALSE(!rep->refcount.DecrementExpectHighRefcount())) { Destroy(rep); } } } // namespace cord_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_