// Copyright 2020 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: cord.h // ----------------------------------------------------------------------------- // // This file defines the `absl::Cord` data structure and operations on that data // structure. A Cord is a string-like sequence of characters optimized for // specific use cases. Unlike a `std::string`, which stores an array of // contiguous characters, Cord data is stored in a structure consisting of // separate, reference-counted "chunks." // // Because a Cord consists of these chunks, data can be added to or removed from // a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a // `std::string`, a Cord can therefore accommodate data that changes over its // lifetime, though it's not quite "mutable"; it can change only in the // attachment, detachment, or rearrangement of chunks of its constituent data. // // A Cord provides some benefit over `std::string` under the following (albeit // narrow) circumstances: // // * Cord data is designed to grow and shrink over a Cord's lifetime. Cord // provides efficient insertions and deletions at the start and end of the // character sequences, avoiding copies in those cases. Static data should // generally be stored as strings. // * External memory consisting of string-like data can be directly added to // a Cord without requiring copies or allocations. // * Cord data may be shared and copied cheaply. Cord provides a copy-on-write // implementation and cheap sub-Cord operations. Copying a Cord is an O(1) // operation. // // As a consequence to the above, Cord data is generally large. Small data // should generally use strings, as construction of a Cord requires some // overhead. Small Cords (<= 15 bytes) are represented inline, but most small // Cords are expected to grow over their lifetimes. // // Note that because a Cord is made up of separate chunked data, random access // to character data within a Cord is slower than within a `std::string`. // // Thread Safety // // Cord has the same thread-safety properties as many other types like // std::string, std::vector<>, int, etc -- it is thread-compatible. In // particular, if threads do not call non-const methods, then it is safe to call // const methods without synchronization. Copying a Cord produces a new instance // that can be used concurrently with the original in arbitrary ways. #ifndef ABSL_STRINGS_CORD_H_ #define ABSL_STRINGS_CORD_H_ #include #include #include #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/endian.h" #include "absl/base/internal/per_thread_tls.h" #include "absl/base/macros.h" #include "absl/base/port.h" #include "absl/container/inlined_vector.h" #include "absl/crc/internal/crc_cord_state.h" #include "absl/functional/function_ref.h" #include "absl/meta/type_traits.h" #include "absl/strings/cord_analysis.h" #include "absl/strings/cord_buffer.h" #include "absl/strings/internal/cord_data_edge.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_btree.h" #include "absl/strings/internal/cord_rep_btree_reader.h" #include "absl/strings/internal/cord_rep_crc.h" #include "absl/strings/internal/cord_rep_ring.h" #include "absl/strings/internal/cordz_functions.h" #include "absl/strings/internal/cordz_info.h" #include "absl/strings/internal/cordz_statistics.h" #include "absl/strings/internal/cordz_update_scope.h" #include "absl/strings/internal/cordz_update_tracker.h" #include "absl/strings/internal/resize_uninitialized.h" #include "absl/strings/internal/string_constant.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" namespace absl { ABSL_NAMESPACE_BEGIN class Cord; class CordTestPeer; template Cord MakeCordFromExternal(absl::string_view, Releaser&&); void CopyCordToString(const Cord& src, std::string* dst); // Cord memory accounting modes enum class CordMemoryAccounting { // Counts the *approximate* number of bytes held in full or in part by this // Cord (which may not remain the same between invocations). Cords that share // memory could each be "charged" independently for the same shared memory. // See also comment on `kTotalMorePrecise` on internally shared memory. kTotal, // Counts the *approximate* number of bytes held in full or in part by this // Cord for the distinct memory held by this cord. This option is similar // to `kTotal`, except that if the cord has multiple references to the same // memory, that memory is only counted once. // // For example: // absl::Cord cord; // cord.append(some_other_cord); // cord.append(some_other_cord); // // Counts `some_other_cord` twice: // cord.EstimatedMemoryUsage(kTotal); // // Counts `some_other_cord` once: // cord.EstimatedMemoryUsage(kTotalMorePrecise); // // The `kTotalMorePrecise` number is more expensive to compute as it requires // deduplicating all memory references. Applications should prefer to use // `kFairShare` or `kTotal` unless they really need a more precise estimate // on "how much memory is potentially held / kept alive by this cord?" kTotalMorePrecise, // Counts the *approximate* number of bytes held in full or in part by this // Cord weighted by the sharing ratio of that data. For example, if some data // edge is shared by 4 different Cords, then each cord is attributed 1/4th of // the total memory usage as a 'fair share' of the total memory usage. kFairShare, }; // Cord // // A Cord is a sequence of characters, designed to be more efficient than a // `std::string` in certain circumstances: namely, large string data that needs // to change over its lifetime or shared, especially when such data is shared // across API boundaries. // // A Cord stores its character data in a structure that allows efficient prepend // and append operations. This makes a Cord useful for large string data sent // over in a wire format that may need to be prepended or appended at some point // during the data exchange (e.g. HTTP, protocol buffers). For example, a // Cord is useful for storing an HTTP request, and prepending an HTTP header to // such a request. // // Cords should not be used for storing general string data, however. They // require overhead to construct and are slower than strings for random access. // // The Cord API provides the following common API operations: // // * Create or assign Cords out of existing string data, memory, or other Cords // * Append and prepend data to an existing Cord // * Create new Sub-Cords from existing Cord data // * Swap Cord data and compare Cord equality // * Write out Cord data by constructing a `std::string` // // Additionally, the API provides iterator utilities to iterate through Cord // data via chunks or character bytes. // class Cord { private: template using EnableIfString = absl::enable_if_t::value, int>; public: // Cord::Cord() Constructors. // Creates an empty Cord. constexpr Cord() noexcept; // Creates a Cord from an existing Cord. Cord is copyable and efficiently // movable. The moved-from state is valid but unspecified. Cord(const Cord& src); Cord(Cord&& src) noexcept; Cord& operator=(const Cord& x); Cord& operator=(Cord&& x) noexcept; // Creates a Cord from a `src` string. This constructor is marked explicit to // prevent implicit Cord constructions from arguments convertible to an // `absl::string_view`. explicit Cord(absl::string_view src); Cord& operator=(absl::string_view src); // Creates a Cord from a `std::string&&` rvalue. These constructors are // templated to avoid ambiguities for types that are convertible to both // `absl::string_view` and `std::string`, such as `const char*`. template = 0> explicit Cord(T&& src); template = 0> Cord& operator=(T&& src); // Cord::~Cord() // // Destructs the Cord. ~Cord() { if (contents_.is_tree()) DestroyCordSlow(); } // MakeCordFromExternal() // // Creates a Cord that takes ownership of external string memory. The // contents of `data` are not copied to the Cord; instead, the external // memory is added to the Cord and reference-counted. This data may not be // changed for the life of the Cord, though it may be prepended or appended // to. // // `MakeCordFromExternal()` takes a callable "releaser" that is invoked when // the reference count for `data` reaches zero. As noted above, this data must // remain live until the releaser is invoked. The callable releaser also must: // // * be move constructible // * support `void operator()(absl::string_view) const` or `void operator()` // // Example: // // Cord MakeCord(BlockPool* pool) { // Block* block = pool->NewBlock(); // FillBlock(block); // return absl::MakeCordFromExternal( // block->ToStringView(), // [pool, block](absl::string_view v) { // pool->FreeBlock(block, v); // }); // } // // WARNING: Because a Cord can be reference-counted, it's likely a bug if your // releaser doesn't do anything. For example, consider the following: // // void Foo(const char* buffer, int len) { // auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len), // [](absl::string_view) {}); // // // BUG: If Bar() copies its cord for any reason, including keeping a // // substring of it, the lifetime of buffer might be extended beyond // // when Foo() returns. // Bar(c); // } template friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser); // Cord::Clear() // // Releases the Cord data. Any nodes that share data with other Cords, if // applicable, will have their reference counts reduced by 1. ABSL_ATTRIBUTE_REINITIALIZES void Clear(); // Cord::Append() // // Appends data to the Cord, which may come from another Cord or other string // data. void Append(const Cord& src); void Append(Cord&& src); void Append(absl::string_view src); template = 0> void Append(T&& src); // Appends `buffer` to this cord, unless `buffer` has a zero length in which // case this method has no effect on this cord instance. // This method is guaranteed to consume `buffer`. void Append(CordBuffer buffer); // Returns a CordBuffer, re-using potential existing capacity in this cord. // // Cord instances may have additional unused capacity in the last (or first) // nodes of the underlying tree to facilitate amortized growth. This method // allows applications to explicitly use this spare capacity if available, // or create a new CordBuffer instance otherwise. // If this cord has a final non-shared node with at least `min_capacity` // available, then this method will return that buffer including its data // contents. I.e.; the returned buffer will have a non-zero length, and // a capacity of at least `buffer.length + min_capacity`. Otherwise, this // method will return `CordBuffer::CreateWithDefaultLimit(capacity)`. // // Below an example of using GetAppendBuffer. Notice that in this example we // use `GetAppendBuffer()` only on the first iteration. As we know nothing // about any initial extra capacity in `cord`, we may be able to use the extra // capacity. But as we add new buffers with fully utilized contents after that // we avoid calling `GetAppendBuffer()` on subsequent iterations: while this // works fine, it results in an unnecessary inspection of cord contents: // // void AppendRandomDataToCord(absl::Cord &cord, size_t n) { // bool first = true; // while (n > 0) { // CordBuffer buffer = first ? cord.GetAppendBuffer(n) // : CordBuffer::CreateWithDefaultLimit(n); // absl::Span data = buffer.available_up_to(n); // FillRandomValues(data.data(), data.size()); // buffer.IncreaseLengthBy(data.size()); // cord.Append(std::move(buffer)); // n -= data.size(); // first = false; // } // } CordBuffer GetAppendBuffer(size_t capacity, size_t min_capacity = 16); // Returns a CordBuffer, re-using potential existing capacity in this cord. // // This function is identical to `GetAppendBuffer`, except that in the case // where a new `CordBuffer` is allocated, it is allocated using the provided // custom limit instead of the default limit. `GetAppendBuffer` will default // to `CordBuffer::CreateWithDefaultLimit(capacity)` whereas this method // will default to `CordBuffer::CreateWithCustomLimit(block_size, capacity)`. // This method is equivalent to `GetAppendBuffer` if `block_size` is zero. // See the documentation for `CreateWithCustomLimit` for more details on the // restrictions and legal values for `block_size`. CordBuffer GetCustomAppendBuffer(size_t block_size, size_t capacity, size_t min_capacity = 16); // Cord::Prepend() // // Prepends data to the Cord, which may come from another Cord or other string // data. void Prepend(const Cord& src); void Prepend(absl::string_view src); template = 0> void Prepend(T&& src); // Prepends `buffer` to this cord, unless `buffer` has a zero length in which // case this method has no effect on this cord instance. // This method is guaranteed to consume `buffer`. void Prepend(CordBuffer buffer); // Cord::RemovePrefix() // // Removes the first `n` bytes of a Cord. void RemovePrefix(size_t n); void RemoveSuffix(size_t n); // Cord::Subcord() // // Returns a new Cord representing the subrange [pos, pos + new_size) of // *this. If pos >= size(), the result is empty(). If // (pos + new_size) >= size(), the result is the subrange [pos, size()). Cord Subcord(size_t pos, size_t new_size) const; // Cord::swap() // // Swaps the contents of the Cord with `other`. void swap(Cord& other) noexcept; // swap() // // Swaps the contents of two Cords. friend void swap(Cord& x, Cord& y) noexcept { x.swap(y); } // Cord::size() // // Returns the size of the Cord. size_t size() const; // Cord::empty() // // Determines whether the given Cord is empty, returning `true` is so. bool empty() const; // Cord::EstimatedMemoryUsage() // // Returns the *approximate* number of bytes held by this cord. // See CordMemoryAccounting for more information on the accounting method. size_t EstimatedMemoryUsage(CordMemoryAccounting accounting_method = CordMemoryAccounting::kTotal) const; // Cord::Compare() // // Compares 'this' Cord with rhs. This function and its relatives treat Cords // as sequences of unsigned bytes. The comparison is a straightforward // lexicographic comparison. `Cord::Compare()` returns values as follows: // // -1 'this' Cord is smaller // 0 two Cords are equal // 1 'this' Cord is larger int Compare(absl::string_view rhs) const; int Compare(const Cord& rhs) const; // Cord::StartsWith() // // Determines whether the Cord starts with the passed string data `rhs`. bool StartsWith(const Cord& rhs) const; bool StartsWith(absl::string_view rhs) const; // Cord::EndsWith() // // Determines whether the Cord ends with the passed string data `rhs`. bool EndsWith(absl::string_view rhs) const; bool EndsWith(const Cord& rhs) const; // Cord::operator std::string() // // Converts a Cord into a `std::string()`. This operator is marked explicit to // prevent unintended Cord usage in functions that take a string. explicit operator std::string() const; // CopyCordToString() // // Copies the contents of a `src` Cord into a `*dst` string. // // This function optimizes the case of reusing the destination string since it // can reuse previously allocated capacity. However, this function does not // guarantee that pointers previously returned by `dst->data()` remain valid // even if `*dst` had enough capacity to hold `src`. If `*dst` is a new // object, prefer to simply use the conversion operator to `std::string`. friend void CopyCordToString(const Cord& src, std::string* dst); class CharIterator; //---------------------------------------------------------------------------- // Cord::ChunkIterator //---------------------------------------------------------------------------- // // A `Cord::ChunkIterator` allows iteration over the constituent chunks of its // Cord. Such iteration allows you to perform non-const operations on the data // of a Cord without modifying it. // // Generally, you do not instantiate a `Cord::ChunkIterator` directly; // instead, you create one implicitly through use of the `Cord::Chunks()` // member function. // // The `Cord::ChunkIterator` has the following properties: // // * The iterator is invalidated after any non-const operation on the // Cord object over which it iterates. // * The `string_view` returned by dereferencing a valid, non-`end()` // iterator is guaranteed to be non-empty. // * Two `ChunkIterator` objects can be compared equal if and only if they // remain valid and iterate over the same Cord. // * The iterator in this case is a proxy iterator; the `string_view` // returned by the iterator does not live inside the Cord, and its // lifetime is limited to the lifetime of the iterator itself. To help // prevent lifetime issues, `ChunkIterator::reference` is not a true // reference type and is equivalent to `value_type`. // * The iterator keeps state that can grow for Cords that contain many // nodes and are imbalanced due to sharing. Prefer to pass this type by // const reference instead of by value. class ChunkIterator { public: using iterator_category = std::input_iterator_tag; using value_type = absl::string_view; using difference_type = ptrdiff_t; using pointer = const value_type*; using reference = value_type; ChunkIterator() = default; ChunkIterator& operator++(); ChunkIterator operator++(int); bool operator==(const ChunkIterator& other) const; bool operator!=(const ChunkIterator& other) const; reference operator*() const; pointer operator->() const; friend class Cord; friend class CharIterator; private: using CordRep = absl::cord_internal::CordRep; using CordRepBtree = absl::cord_internal::CordRepBtree; using CordRepBtreeReader = absl::cord_internal::CordRepBtreeReader; // Constructs a `begin()` iterator from `tree`. `tree` must not be null. explicit ChunkIterator(cord_internal::CordRep* tree); // Constructs a `begin()` iterator from `cord`. explicit ChunkIterator(const Cord* cord); // Initializes this instance from a tree. Invoked by constructors. void InitTree(cord_internal::CordRep* tree); // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than // `current_chunk_.size()`. void RemoveChunkPrefix(size_t n); Cord AdvanceAndReadBytes(size_t n); void AdvanceBytes(size_t n); // Btree specific operator++ ChunkIterator& AdvanceBtree(); void AdvanceBytesBtree(size_t n); // A view into bytes of the current `CordRep`. It may only be a view to a // suffix of bytes if this is being used by `CharIterator`. absl::string_view current_chunk_; // The current leaf, or `nullptr` if the iterator points to short data. // If the current chunk is a substring node, current_leaf_ points to the // underlying flat or external node. absl::cord_internal::CordRep* current_leaf_ = nullptr; // The number of bytes left in the `Cord` over which we are iterating. size_t bytes_remaining_ = 0; // Cord reader for cord btrees. Empty if not traversing a btree. CordRepBtreeReader btree_reader_; }; // Cord::chunk_begin() // // Returns an iterator to the first chunk of the `Cord`. // // Generally, prefer using `Cord::Chunks()` within a range-based for loop for // iterating over the chunks of a Cord. This method may be useful for getting // a `ChunkIterator` where range-based for-loops are not useful. // // Example: // // absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c, // absl::string_view s) { // return std::find(c.chunk_begin(), c.chunk_end(), s); // } ChunkIterator chunk_begin() const; // Cord::chunk_end() // // Returns an iterator one increment past the last chunk of the `Cord`. // // Generally, prefer using `Cord::Chunks()` within a range-based for loop for // iterating over the chunks of a Cord. This method may be useful for getting // a `ChunkIterator` where range-based for-loops may not be available. ChunkIterator chunk_end() const; //---------------------------------------------------------------------------- // Cord::ChunkRange //---------------------------------------------------------------------------- // // `ChunkRange` is a helper class for iterating over the chunks of the `Cord`, // producing an iterator which can be used within a range-based for loop. // Construction of a `ChunkRange` will return an iterator pointing to the // first chunk of the Cord. Generally, do not construct a `ChunkRange` // directly; instead, prefer to use the `Cord::Chunks()` method. // // Implementation note: `ChunkRange` is simply a convenience wrapper over // `Cord::chunk_begin()` and `Cord::chunk_end()`. class ChunkRange { public: // Fulfill minimum c++ container requirements [container.requirements] // These (partial) container type definitions allow ChunkRange to be used // in various utilities expecting a subset of [container.requirements]. // For example, the below enables using `::testing::ElementsAre(...)` using value_type = absl::string_view; using reference = value_type&; using const_reference = const value_type&; using iterator = ChunkIterator; using const_iterator = ChunkIterator; explicit ChunkRange(const Cord* cord) : cord_(cord) {} ChunkIterator begin() const; ChunkIterator end() const; private: const Cord* cord_; }; // Cord::Chunks() // // Returns a `Cord::ChunkRange` for iterating over the chunks of a `Cord` with // a range-based for-loop. For most iteration tasks on a Cord, use // `Cord::Chunks()` to retrieve this iterator. // // Example: // // void ProcessChunks(const Cord& cord) { // for (absl::string_view chunk : cord.Chunks()) { ... } // } // // Note that the ordinary caveats of temporary lifetime extension apply: // // void Process() { // for (absl::string_view chunk : CordFactory().Chunks()) { // // The temporary Cord returned by CordFactory has been destroyed! // } // } ChunkRange Chunks() const; //---------------------------------------------------------------------------- // Cord::CharIterator //---------------------------------------------------------------------------- // // A `Cord::CharIterator` allows iteration over the constituent characters of // a `Cord`. // // Generally, you do not instantiate a `Cord::CharIterator` directly; instead, // you create one implicitly through use of the `Cord::Chars()` member // function. // // A `Cord::CharIterator` has the following properties: // // * The iterator is invalidated after any non-const operation on the // Cord object over which it iterates. // * Two `CharIterator` objects can be compared equal if and only if they // remain valid and iterate over the same Cord. // * The iterator keeps state that can grow for Cords that contain many // nodes and are imbalanced due to sharing. Prefer to pass this type by // const reference instead of by value. // * This type cannot act as a forward iterator because a `Cord` can reuse // sections of memory. This fact violates the requirement for forward // iterators to compare equal if dereferencing them returns the same // object. class CharIterator { public: using iterator_category = std::input_iterator_tag; using value_type = char; using difference_type = ptrdiff_t; using pointer = const char*; using reference = const char&; CharIterator() = default; CharIterator& operator++(); CharIterator operator++(int); bool operator==(const CharIterator& other) const; bool operator!=(const CharIterator& other) const; reference operator*() const; pointer operator->() const; friend Cord; private: explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {} ChunkIterator chunk_iterator_; }; // Cord::AdvanceAndRead() // // Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes // advanced as a separate `Cord`. `n_bytes` must be less than or equal to the // number of bytes within the Cord; otherwise, behavior is undefined. It is // valid to pass `char_end()` and `0`. static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes); // Cord::Advance() // // Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than // or equal to the number of bytes remaining within the Cord; otherwise, // behavior is undefined. It is valid to pass `char_end()` and `0`. static void Advance(CharIterator* it, size_t n_bytes); // Cord::ChunkRemaining() // // Returns the longest contiguous view starting at the iterator's position. // // `it` must be dereferenceable. static absl::string_view ChunkRemaining(const CharIterator& it); // Cord::char_begin() // // Returns an iterator to the first character of the `Cord`. // // Generally, prefer using `Cord::Chars()` within a range-based for loop for // iterating over the chunks of a Cord. This method may be useful for getting // a `CharIterator` where range-based for-loops may not be available. CharIterator char_begin() const; // Cord::char_end() // // Returns an iterator to one past the last character of the `Cord`. // // Generally, prefer using `Cord::Chars()` within a range-based for loop for // iterating over the chunks of a Cord. This method may be useful for getting // a `CharIterator` where range-based for-loops are not useful. CharIterator char_end() const; // Cord::CharRange // // `CharRange` is a helper class for iterating over the characters of a // producing an iterator which can be used within a range-based for loop. // Construction of a `CharRange` will return an iterator pointing to the first // character of the Cord. Generally, do not construct a `CharRange` directly; // instead, prefer to use the `Cord::Chars()` method shown below. // // Implementation note: `CharRange` is simply a convenience wrapper over // `Cord::char_begin()` and `Cord::char_end()`. class CharRange { public: // Fulfill minimum c++ container requirements [container.requirements] // These (partial) container type definitions allow CharRange to be used // in various utilities expecting a subset of [container.requirements]. // For example, the below enables using `::testing::ElementsAre(...)` using value_type = char; using reference = value_type&; using const_reference = const value_type&; using iterator = CharIterator; using const_iterator = CharIterator; explicit CharRange(const Cord* cord) : cord_(cord) {} CharIterator begin() const; CharIterator end() const; private: const Cord* cord_; }; // Cord::Chars() // // Returns a `Cord::CharRange` for iterating over the characters of a `Cord` // with a range-based for-loop. For most character-based iteration tasks on a // Cord, use `Cord::Chars()` to retrieve this iterator. // // Example: // // void ProcessCord(const Cord& cord) { // for (char c : cord.Chars()) { ... } // } // // Note that the ordinary caveats of temporary lifetime extension apply: // // void Process() { // for (char c : CordFactory().Chars()) { // // The temporary Cord returned by CordFactory has been destroyed! // } // } CharRange Chars() const; // Cord::operator[] // // Gets the "i"th character of the Cord and returns it, provided that // 0 <= i < Cord.size(). // // NOTE: This routine is reasonably efficient. It is roughly // logarithmic based on the number of chunks that make up the cord. Still, // if you need to iterate over the contents of a cord, you should // use a CharIterator/ChunkIterator rather than call operator[] or Get() // repeatedly in a loop. char operator[](size_t i) const; // Cord::TryFlat() // // If this cord's representation is a single flat array, returns a // string_view referencing that array. Otherwise returns nullopt. absl::optional TryFlat() const ABSL_ATTRIBUTE_LIFETIME_BOUND; // Cord::Flatten() // // Flattens the cord into a single array and returns a view of the data. // // If the cord was already flat, the contents are not modified. absl::string_view Flatten() ABSL_ATTRIBUTE_LIFETIME_BOUND; // Supports absl::Cord as a sink object for absl::Format(). friend void AbslFormatFlush(absl::Cord* cord, absl::string_view part) { cord->Append(part); } // Cord::SetExpectedChecksum() // // Stores a checksum value with this non-empty cord instance, for later // retrieval. // // The expected checksum is a number stored out-of-band, alongside the data. // It is preserved across copies and assignments, but any mutations to a cord // will cause it to lose its expected checksum. // // The expected checksum is not part of a Cord's value, and does not affect // operations such as equality or hashing. // // This field is intended to store a CRC32C checksum for later validation, to // help support end-to-end checksum workflows. However, the Cord API itself // does no CRC validation, and assigns no meaning to this number. // // This call has no effect if this cord is empty. void SetExpectedChecksum(uint32_t crc); // Returns this cord's expected checksum, if it has one. Otherwise, returns // nullopt. absl::optional ExpectedChecksum() const; template friend H AbslHashValue(H hash_state, const absl::Cord& c) { absl::optional maybe_flat = c.TryFlat(); if (maybe_flat.has_value()) { return H::combine(std::move(hash_state), *maybe_flat); } return c.HashFragmented(std::move(hash_state)); } // Create a Cord with the contents of StringConstant::value. // No allocations will be done and no data will be copied. // This is an INTERNAL API and subject to change or removal. This API can only // be used by spelling absl::strings_internal::MakeStringConstant, which is // also an internal API. template // NOLINTNEXTLINE(google-explicit-constructor) constexpr Cord(strings_internal::StringConstant); private: using CordRep = absl::cord_internal::CordRep; using CordRepFlat = absl::cord_internal::CordRepFlat; using CordzInfo = cord_internal::CordzInfo; using CordzUpdateScope = cord_internal::CordzUpdateScope; using CordzUpdateTracker = cord_internal::CordzUpdateTracker; using InlineData = cord_internal::InlineData; using MethodIdentifier = CordzUpdateTracker::MethodIdentifier; // Creates a cord instance with `method` representing the originating // public API call causing the cord to be created. explicit Cord(absl::string_view src, MethodIdentifier method); friend class CordTestPeer; friend bool operator==(const Cord& lhs, const Cord& rhs); friend bool operator==(const Cord& lhs, absl::string_view rhs); friend const CordzInfo* GetCordzInfoForTesting(const Cord& cord); // Calls the provided function once for each cord chunk, in order. Unlike // Chunks(), this API will not allocate memory. void ForEachChunk(absl::FunctionRef) const; // Allocates new contiguous storage for the contents of the cord. This is // called by Flatten() when the cord was not already flat. absl::string_view FlattenSlowPath(); // Actual cord contents are hidden inside the following simple // class so that we can isolate the bulk of cord.cc from changes // to the representation. // // InlineRep holds either a tree pointer, or an array of kMaxInline bytes. class InlineRep { public: static constexpr unsigned char kMaxInline = cord_internal::kMaxInline; static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), ""); constexpr InlineRep() : data_() {} explicit InlineRep(InlineData::DefaultInitType init) : data_(init) {} InlineRep(const InlineRep& src); InlineRep(InlineRep&& src); InlineRep& operator=(const InlineRep& src); InlineRep& operator=(InlineRep&& src) noexcept; explicit constexpr InlineRep(absl::string_view sv, CordRep* rep); void Swap(InlineRep* rhs); bool empty() const; size_t size() const; const char* data() const; // Returns nullptr if holding pointer void set_data(const char* data, size_t n); // Discards pointer, if any char* set_data(size_t n); // Write data to the result // Returns nullptr if holding bytes absl::cord_internal::CordRep* tree() const; absl::cord_internal::CordRep* as_tree() const; const char* as_chars() const; // Returns non-null iff was holding a pointer absl::cord_internal::CordRep* clear(); // Converts to pointer if necessary. void reduce_size(size_t n); // REQUIRES: holding data void remove_prefix(size_t n); // REQUIRES: holding data void AppendArray(absl::string_view src, MethodIdentifier method); absl::string_view FindFlatStartPiece() const; // Creates a CordRepFlat instance from the current inlined data with `extra' // bytes of desired additional capacity. CordRepFlat* MakeFlatWithExtraCapacity(size_t extra); // Sets the tree value for this instance. `rep` must not be null. // Requires the current instance to hold a tree, and a lock to be held on // any CordzInfo referenced by this instance. The latter is enforced through // the CordzUpdateScope argument. If the current instance is sampled, then // the CordzInfo instance is updated to reference the new `rep` value. void SetTree(CordRep* rep, const CordzUpdateScope& scope); // Identical to SetTree(), except that `rep` is allowed to be null, in // which case the current instance is reset to an empty value. void SetTreeOrEmpty(CordRep* rep, const CordzUpdateScope& scope); // Sets the tree value for this instance, and randomly samples this cord. // This function disregards existing contents in `data_`, and should be // called when a Cord is 'promoted' from an 'uninitialized' or 'inlined' // value to a non-inlined (tree / ring) value. void EmplaceTree(CordRep* rep, MethodIdentifier method); // Identical to EmplaceTree, except that it copies the parent stack from // the provided `parent` data if the parent is sampled. void EmplaceTree(CordRep* rep, const InlineData& parent, MethodIdentifier method); // Commits the change of a newly created, or updated `rep` root value into // this cord. `old_rep` indicates the old (inlined or tree) value of the // cord, and determines if the commit invokes SetTree() or EmplaceTree(). void CommitTree(const CordRep* old_rep, CordRep* rep, const CordzUpdateScope& scope, MethodIdentifier method); void AppendTreeToInlined(CordRep* tree, MethodIdentifier method); void AppendTreeToTree(CordRep* tree, MethodIdentifier method); void AppendTree(CordRep* tree, MethodIdentifier method); void PrependTreeToInlined(CordRep* tree, MethodIdentifier method); void PrependTreeToTree(CordRep* tree, MethodIdentifier method); void PrependTree(CordRep* tree, MethodIdentifier method); bool IsSame(const InlineRep& other) const { return data_ == other.data_; } void CopyTo(std::string* dst) const { // memcpy is much faster when operating on a known size. On most supported // platforms, the small string optimization is large enough that resizing // to 15 bytes does not cause a memory allocation. absl::strings_internal::STLStringResizeUninitialized(dst, kMaxInline); data_.copy_max_inline_to(&(*dst)[0]); // erase is faster than resize because the logic for memory allocation is // not needed. dst->erase(inline_size()); } // Copies the inline contents into `dst`. Assumes the cord is not empty. void CopyToArray(char* dst) const; bool is_tree() const { return data_.is_tree(); } // Returns true if the Cord is being profiled by cordz. bool is_profiled() const { return data_.is_tree() && data_.is_profiled(); } // Returns the available inlined capacity, or 0 if is_tree() == true. size_t remaining_inline_capacity() const { return data_.is_tree() ? 0 : kMaxInline - data_.inline_size(); } // Returns the profiled CordzInfo, or nullptr if not sampled. absl::cord_internal::CordzInfo* cordz_info() const { return data_.cordz_info(); } // Sets the profiled CordzInfo. `cordz_info` must not be null. void set_cordz_info(cord_internal::CordzInfo* cordz_info) { assert(cordz_info != nullptr); data_.set_cordz_info(cordz_info); } // Resets the current cordz_info to null / empty. void clear_cordz_info() { data_.clear_cordz_info(); } private: friend class Cord; void AssignSlow(const InlineRep& src); // Unrefs the tree and stops profiling. void UnrefTree(); void ResetToEmpty() { data_ = {}; } void set_inline_size(size_t size) { data_.set_inline_size(size); } size_t inline_size() const { return data_.inline_size(); } // Empty cords that carry a checksum have a CordRepCrc node with a null // child node. The code can avoid lots of special cases where it would // otherwise transition from tree to inline storage if we just remove the // CordRepCrc node before mutations. Must never be called inside a // CordzUpdateScope since it untracks the cordz info. void MaybeRemoveEmptyCrcNode(); cord_internal::InlineData data_; }; InlineRep contents_; // Helper for GetFlat() and TryFlat(). static bool GetFlatAux(absl::cord_internal::CordRep* rep, absl::string_view* fragment); // Helper for ForEachChunk(). static void ForEachChunkAux( absl::cord_internal::CordRep* rep, absl::FunctionRef callback); // The destructor for non-empty Cords. void DestroyCordSlow(); // Out-of-line implementation of slower parts of logic. void CopyToArraySlowPath(char* dst) const; int CompareSlowPath(absl::string_view rhs, size_t compared_size, size_t size_to_compare) const; int CompareSlowPath(const Cord& rhs, size_t compared_size, size_t size_to_compare) const; bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const; bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const; int CompareImpl(const Cord& rhs) const; template friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs, size_t size_to_compare); static absl::string_view GetFirstChunk(const Cord& c); static absl::string_view GetFirstChunk(absl::string_view sv); // Returns a new reference to contents_.tree(), or steals an existing // reference if called on an rvalue. absl::cord_internal::CordRep* TakeRep() const&; absl::cord_internal::CordRep* TakeRep() &&; // Helper for Append(). template void AppendImpl(C&& src); // Appends / Prepends `src` to this instance, using precise sizing. // This method does explicitly not attempt to use any spare capacity // in any pending last added private owned flat. // Requires `src` to be <= kMaxFlatLength. void AppendPrecise(absl::string_view src, MethodIdentifier method); void PrependPrecise(absl::string_view src, MethodIdentifier method); CordBuffer GetAppendBufferSlowPath(size_t block_size, size_t capacity, size_t min_capacity); // Prepends the provided data to this instance. `method` contains the public // API method for this action which is tracked for Cordz sampling purposes. void PrependArray(absl::string_view src, MethodIdentifier method); // Assigns the value in 'src' to this instance, 'stealing' its contents. // Requires src.length() > kMaxBytesToCopy. Cord& AssignLargeString(std::string&& src); // Helper for AbslHashValue(). template H HashFragmented(H hash_state) const { typename H::AbslInternalPiecewiseCombiner combiner; ForEachChunk([&combiner, &hash_state](absl::string_view chunk) { hash_state = combiner.add_buffer(std::move(hash_state), chunk.data(), chunk.size()); }); return H::combine(combiner.finalize(std::move(hash_state)), size()); } friend class CrcCord; void SetCrcCordState(crc_internal::CrcCordState state); const crc_internal::CrcCordState* MaybeGetCrcCordState() const; }; ABSL_NAMESPACE_END } // namespace absl namespace absl { ABSL_NAMESPACE_BEGIN // allow a Cord to be logged extern std::ostream& operator<<(std::ostream& out, const Cord& cord); // ------------------------------------------------------------------ // Internal details follow. Clients should ignore. namespace cord_internal { // Does non-template-specific `CordRepExternal` initialization. // Requires `data` to be non-empty. void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep); // Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer // to it. Requires `data` to be non-empty. template // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) { assert(!data.empty()); using ReleaserType = absl::decay_t; CordRepExternal* rep = new CordRepExternalImpl( std::forward(releaser), 0); InitializeCordRepExternal(data, rep); return rep; } // Overload for function reference types that dispatches using a function // pointer because there are no `alignof()` or `sizeof()` a function reference. // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. inline CordRep* NewExternalRep(absl::string_view data, void (&releaser)(absl::string_view)) { return NewExternalRep(data, &releaser); } } // namespace cord_internal template Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) { Cord cord; if (ABSL_PREDICT_TRUE(!data.empty())) { cord.contents_.EmplaceTree(::absl::cord_internal::NewExternalRep( data, std::forward(releaser)), Cord::MethodIdentifier::kMakeCordFromExternal); } else { using ReleaserType = absl::decay_t; cord_internal::InvokeReleaser( cord_internal::Rank0{}, ReleaserType(std::forward(releaser)), data); } return cord; } constexpr Cord::InlineRep::InlineRep(absl::string_view sv, CordRep* rep) : data_(sv, rep) {} inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) : data_(InlineData::kDefaultInit) { if (CordRep* tree = src.tree()) { EmplaceTree(CordRep::Ref(tree), src.data_, CordzUpdateTracker::kConstructorCord); } else { data_ = src.data_; } } inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) : data_(src.data_) { src.ResetToEmpty(); } inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) { if (this == &src) { return *this; } if (!is_tree() && !src.is_tree()) { data_ = src.data_; return *this; } AssignSlow(src); return *this; } inline Cord::InlineRep& Cord::InlineRep::operator=( Cord::InlineRep&& src) noexcept { if (is_tree()) { UnrefTree(); } data_ = src.data_; src.ResetToEmpty(); return *this; } inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) { if (rhs == this) { return; } std::swap(data_, rhs->data_); } inline const char* Cord::InlineRep::data() const { return is_tree() ? nullptr : data_.as_chars(); } inline const char* Cord::InlineRep::as_chars() const { assert(!data_.is_tree()); return data_.as_chars(); } inline absl::cord_internal::CordRep* Cord::InlineRep::as_tree() const { assert(data_.is_tree()); return data_.as_tree(); } inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const { if (is_tree()) { return as_tree(); } else { return nullptr; } } inline bool Cord::InlineRep::empty() const { return data_.is_empty(); } inline size_t Cord::InlineRep::size() const { return is_tree() ? as_tree()->length : inline_size(); } inline cord_internal::CordRepFlat* Cord::InlineRep::MakeFlatWithExtraCapacity( size_t extra) { static_assert(cord_internal::kMinFlatLength >= sizeof(data_), ""); size_t len = data_.inline_size(); auto* result = CordRepFlat::New(len + extra); result->length = len; data_.copy_max_inline_to(result->Data()); return result; } inline void Cord::InlineRep::EmplaceTree(CordRep* rep, MethodIdentifier method) { assert(rep); data_.make_tree(rep); CordzInfo::MaybeTrackCord(data_, method); } inline void Cord::InlineRep::EmplaceTree(CordRep* rep, const InlineData& parent, MethodIdentifier method) { data_.make_tree(rep); CordzInfo::MaybeTrackCord(data_, parent, method); } inline void Cord::InlineRep::SetTree(CordRep* rep, const CordzUpdateScope& scope) { assert(rep); assert(data_.is_tree()); data_.set_tree(rep); scope.SetCordRep(rep); } inline void Cord::InlineRep::SetTreeOrEmpty(CordRep* rep, const CordzUpdateScope& scope) { assert(data_.is_tree()); if (rep) { data_.set_tree(rep); } else { data_ = {}; } scope.SetCordRep(rep); } inline void Cord::InlineRep::CommitTree(const CordRep* old_rep, CordRep* rep, const CordzUpdateScope& scope, MethodIdentifier method) { if (old_rep) { SetTree(rep, scope); } else { EmplaceTree(rep, method); } } inline absl::cord_internal::CordRep* Cord::InlineRep::clear() { if (is_tree()) { CordzInfo::MaybeUntrackCord(cordz_info()); } absl::cord_internal::CordRep* result = tree(); ResetToEmpty(); return result; } inline void Cord::InlineRep::CopyToArray(char* dst) const { assert(!is_tree()); size_t n = inline_size(); assert(n != 0); cord_internal::SmallMemmove(dst, data_.as_chars(), n); } inline void Cord::InlineRep::MaybeRemoveEmptyCrcNode() { CordRep* rep = tree(); if (rep == nullptr || ABSL_PREDICT_TRUE(rep->length > 0)) { return; } assert(rep->IsCrc()); assert(rep->crc()->child == nullptr); CordzInfo::MaybeUntrackCord(cordz_info()); CordRep::Unref(rep); ResetToEmpty(); } constexpr inline Cord::Cord() noexcept {} inline Cord::Cord(absl::string_view src) : Cord(src, CordzUpdateTracker::kConstructorString) {} template constexpr Cord::Cord(strings_internal::StringConstant) : contents_(strings_internal::StringConstant::value, strings_internal::StringConstant::value.size() <= cord_internal::kMaxInline ? nullptr : &cord_internal::ConstInitExternalStorage< strings_internal::StringConstant>::value) {} inline Cord& Cord::operator=(const Cord& x) { contents_ = x.contents_; return *this; } template > Cord& Cord::operator=(T&& src) { if (src.size() <= cord_internal::kMaxBytesToCopy) { return operator=(absl::string_view(src)); } else { return AssignLargeString(std::forward(src)); } } inline Cord::Cord(const Cord& src) : contents_(src.contents_) {} inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {} inline void Cord::swap(Cord& other) noexcept { contents_.Swap(&other.contents_); } inline Cord& Cord::operator=(Cord&& x) noexcept { contents_ = std::move(x.contents_); return *this; } extern template Cord::Cord(std::string&& src); inline size_t Cord::size() const { // Length is 1st field in str.rep_ return contents_.size(); } inline bool Cord::empty() const { return size() == 0; } inline size_t Cord::EstimatedMemoryUsage( CordMemoryAccounting accounting_method) const { size_t result = sizeof(Cord); if (const absl::cord_internal::CordRep* rep = contents_.tree()) { switch (accounting_method) { case CordMemoryAccounting::kFairShare: result += cord_internal::GetEstimatedFairShareMemoryUsage(rep); break; case CordMemoryAccounting::kTotalMorePrecise: result += cord_internal::GetMorePreciseMemoryUsage(rep); break; case CordMemoryAccounting::kTotal: result += cord_internal::GetEstimatedMemoryUsage(rep); break; } } return result; } inline absl::optional Cord::TryFlat() const { absl::cord_internal::CordRep* rep = contents_.tree(); if (rep == nullptr) { return absl::string_view(contents_.data(), contents_.size()); } absl::string_view fragment; if (GetFlatAux(rep, &fragment)) { return fragment; } return absl::nullopt; } inline absl::string_view Cord::Flatten() { absl::cord_internal::CordRep* rep = contents_.tree(); if (rep == nullptr) { return absl::string_view(contents_.data(), contents_.size()); } else { absl::string_view already_flat_contents; if (GetFlatAux(rep, &already_flat_contents)) { return already_flat_contents; } } return FlattenSlowPath(); } inline void Cord::Append(absl::string_view src) { contents_.AppendArray(src, CordzUpdateTracker::kAppendString); } inline void Cord::Prepend(absl::string_view src) { PrependArray(src, CordzUpdateTracker::kPrependString); } inline void Cord::Append(CordBuffer buffer) { if (ABSL_PREDICT_FALSE(buffer.length() == 0)) return; absl::string_view short_value; if (CordRep* rep = buffer.ConsumeValue(short_value)) { contents_.AppendTree(rep, CordzUpdateTracker::kAppendCordBuffer); } else { AppendPrecise(short_value, CordzUpdateTracker::kAppendCordBuffer); } } inline void Cord::Prepend(CordBuffer buffer) { if (ABSL_PREDICT_FALSE(buffer.length() == 0)) return; absl::string_view short_value; if (CordRep* rep = buffer.ConsumeValue(short_value)) { contents_.PrependTree(rep, CordzUpdateTracker::kPrependCordBuffer); } else { PrependPrecise(short_value, CordzUpdateTracker::kPrependCordBuffer); } } inline CordBuffer Cord::GetAppendBuffer(size_t capacity, size_t min_capacity) { if (empty()) return CordBuffer::CreateWithDefaultLimit(capacity); return GetAppendBufferSlowPath(0, capacity, min_capacity); } inline CordBuffer Cord::GetCustomAppendBuffer(size_t block_size, size_t capacity, size_t min_capacity) { if (empty()) { return block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity) : CordBuffer::CreateWithDefaultLimit(capacity); } return GetAppendBufferSlowPath(block_size, capacity, min_capacity); } extern template void Cord::Append(std::string&& src); extern template void Cord::Prepend(std::string&& src); inline int Cord::Compare(const Cord& rhs) const { if (!contents_.is_tree() && !rhs.contents_.is_tree()) { return contents_.data_.Compare(rhs.contents_.data_); } return CompareImpl(rhs); } // Does 'this' cord start/end with rhs inline bool Cord::StartsWith(const Cord& rhs) const { if (contents_.IsSame(rhs.contents_)) return true; size_t rhs_size = rhs.size(); if (size() < rhs_size) return false; return EqualsImpl(rhs, rhs_size); } inline bool Cord::StartsWith(absl::string_view rhs) const { size_t rhs_size = rhs.size(); if (size() < rhs_size) return false; return EqualsImpl(rhs, rhs_size); } inline void Cord::ChunkIterator::InitTree(cord_internal::CordRep* tree) { tree = cord_internal::SkipCrcNode(tree); if (tree->tag == cord_internal::BTREE) { current_chunk_ = btree_reader_.Init(tree->btree()); } else { current_leaf_ = tree; current_chunk_ = cord_internal::EdgeData(tree); } } inline Cord::ChunkIterator::ChunkIterator(cord_internal::CordRep* tree) { bytes_remaining_ = tree->length; InitTree(tree); } inline Cord::ChunkIterator::ChunkIterator(const Cord* cord) { if (CordRep* tree = cord->contents_.tree()) { bytes_remaining_ = tree->length; if (ABSL_PREDICT_TRUE(bytes_remaining_ != 0)) { InitTree(tree); } else { current_chunk_ = {}; } } else { bytes_remaining_ = cord->contents_.inline_size(); current_chunk_ = {cord->contents_.data(), bytes_remaining_}; } } inline Cord::ChunkIterator& Cord::ChunkIterator::AdvanceBtree() { current_chunk_ = btree_reader_.Next(); return *this; } inline void Cord::ChunkIterator::AdvanceBytesBtree(size_t n) { assert(n >= current_chunk_.size()); bytes_remaining_ -= n; if (bytes_remaining_) { if (n == current_chunk_.size()) { current_chunk_ = btree_reader_.Next(); } else { size_t offset = btree_reader_.length() - bytes_remaining_; current_chunk_ = btree_reader_.Seek(offset); } } else { current_chunk_ = {}; } } inline Cord::ChunkIterator& Cord::ChunkIterator::operator++() { ABSL_HARDENING_ASSERT(bytes_remaining_ > 0 && "Attempted to iterate past `end()`"); assert(bytes_remaining_ >= current_chunk_.size()); bytes_remaining_ -= current_chunk_.size(); if (bytes_remaining_ > 0) { if (btree_reader_) { return AdvanceBtree(); } else { assert(!current_chunk_.empty()); // Called on invalid iterator. } current_chunk_ = {}; } return *this; } inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) { ChunkIterator tmp(*this); operator++(); return tmp; } inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const { return bytes_remaining_ == other.bytes_remaining_; } inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const { return !(*this == other); } inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const { ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); return current_chunk_; } inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const { ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); return ¤t_chunk_; } inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) { assert(n < current_chunk_.size()); current_chunk_.remove_prefix(n); bytes_remaining_ -= n; } inline void Cord::ChunkIterator::AdvanceBytes(size_t n) { assert(bytes_remaining_ >= n); if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) { RemoveChunkPrefix(n); } else if (n != 0) { if (btree_reader_) { AdvanceBytesBtree(n); } else { bytes_remaining_ = 0; } } } inline Cord::ChunkIterator Cord::chunk_begin() const { return ChunkIterator(this); } inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); } inline Cord::ChunkIterator Cord::ChunkRange::begin() const { return cord_->chunk_begin(); } inline Cord::ChunkIterator Cord::ChunkRange::end() const { return cord_->chunk_end(); } inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); } inline Cord::CharIterator& Cord::CharIterator::operator++() { if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) { chunk_iterator_.RemoveChunkPrefix(1); } else { ++chunk_iterator_; } return *this; } inline Cord::CharIterator Cord::CharIterator::operator++(int) { CharIterator tmp(*this); operator++(); return tmp; } inline bool Cord::CharIterator::operator==(const CharIterator& other) const { return chunk_iterator_ == other.chunk_iterator_; } inline bool Cord::CharIterator::operator!=(const CharIterator& other) const { return !(*this == other); } inline Cord::CharIterator::reference Cord::CharIterator::operator*() const { return *chunk_iterator_->data(); } inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const { return chunk_iterator_->data(); } inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) { assert(it != nullptr); return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes); } inline void Cord::Advance(CharIterator* it, size_t n_bytes) { assert(it != nullptr); it->chunk_iterator_.AdvanceBytes(n_bytes); } inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) { return *it.chunk_iterator_; } inline Cord::CharIterator Cord::char_begin() const { return CharIterator(this); } inline Cord::CharIterator Cord::char_end() const { return CharIterator(); } inline Cord::CharIterator Cord::CharRange::begin() const { return cord_->char_begin(); } inline Cord::CharIterator Cord::CharRange::end() const { return cord_->char_end(); } inline Cord::CharRange Cord::Chars() const { return CharRange(this); } inline void Cord::ForEachChunk( absl::FunctionRef callback) const { absl::cord_internal::CordRep* rep = contents_.tree(); if (rep == nullptr) { callback(absl::string_view(contents_.data(), contents_.size())); } else { ForEachChunkAux(rep, callback); } } // Nonmember Cord-to-Cord relational operators. inline bool operator==(const Cord& lhs, const Cord& rhs) { if (lhs.contents_.IsSame(rhs.contents_)) return true; size_t rhs_size = rhs.size(); if (lhs.size() != rhs_size) return false; return lhs.EqualsImpl(rhs, rhs_size); } inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); } inline bool operator<(const Cord& x, const Cord& y) { return x.Compare(y) < 0; } inline bool operator>(const Cord& x, const Cord& y) { return x.Compare(y) > 0; } inline bool operator<=(const Cord& x, const Cord& y) { return x.Compare(y) <= 0; } inline bool operator>=(const Cord& x, const Cord& y) { return x.Compare(y) >= 0; } // Nonmember Cord-to-absl::string_view relational operators. // // Due to implicit conversions, these also enable comparisons of Cord with // std::string and const char*. inline bool operator==(const Cord& lhs, absl::string_view rhs) { size_t lhs_size = lhs.size(); size_t rhs_size = rhs.size(); if (lhs_size != rhs_size) return false; return lhs.EqualsImpl(rhs, rhs_size); } inline bool operator==(absl::string_view x, const Cord& y) { return y == x; } inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); } inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); } inline bool operator<(const Cord& x, absl::string_view y) { return x.Compare(y) < 0; } inline bool operator<(absl::string_view x, const Cord& y) { return y.Compare(x) > 0; } inline bool operator>(const Cord& x, absl::string_view y) { return y < x; } inline bool operator>(absl::string_view x, const Cord& y) { return y < x; } inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); } inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); } inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); } inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); } // Some internals exposed to test code. namespace strings_internal { class CordTestAccess { public: static size_t FlatOverhead(); static size_t MaxFlatLength(); static size_t SizeofCordRepExternal(); static size_t SizeofCordRepSubstring(); static size_t FlatTagToLength(uint8_t tag); static uint8_t LengthToTag(size_t s); }; } // namespace strings_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_STRINGS_CORD_H_