// Copyright 2020 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/strings/cord.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/endian.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/crc/crc32c.h" #include "absl/crc/internal/crc_cord_state.h" #include "absl/functional/function_ref.h" #include "absl/strings/cord_buffer.h" #include "absl/strings/escaping.h" #include "absl/strings/internal/cord_data_edge.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_btree.h" #include "absl/strings/internal/cord_rep_crc.h" #include "absl/strings/internal/cord_rep_flat.h" #include "absl/strings/internal/cordz_update_tracker.h" #include "absl/strings/internal/resize_uninitialized.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/types/optional.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN using ::absl::cord_internal::CordRep; using ::absl::cord_internal::CordRepBtree; using ::absl::cord_internal::CordRepCrc; using ::absl::cord_internal::CordRepExternal; using ::absl::cord_internal::CordRepFlat; using ::absl::cord_internal::CordRepSubstring; using ::absl::cord_internal::CordzUpdateTracker; using ::absl::cord_internal::InlineData; using ::absl::cord_internal::kMaxFlatLength; using ::absl::cord_internal::kMinFlatLength; using ::absl::cord_internal::kInlinedVectorSize; using ::absl::cord_internal::kMaxBytesToCopy; static void DumpNode(CordRep* rep, bool include_data, std::ostream* os, int indent = 0); static bool VerifyNode(CordRep* root, CordRep* start_node); static inline CordRep* VerifyTree(CordRep* node) { assert(node == nullptr || VerifyNode(node, node)); static_cast(&VerifyNode); return node; } static CordRepFlat* CreateFlat(const char* data, size_t length, size_t alloc_hint) { CordRepFlat* flat = CordRepFlat::New(length + alloc_hint); flat->length = length; memcpy(flat->Data(), data, length); return flat; } // Creates a new flat or Btree out of the specified array. // The returned node has a refcount of 1. static CordRep* NewBtree(const char* data, size_t length, size_t alloc_hint) { if (length <= kMaxFlatLength) { return CreateFlat(data, length, alloc_hint); } CordRepFlat* flat = CreateFlat(data, kMaxFlatLength, 0); data += kMaxFlatLength; length -= kMaxFlatLength; auto* root = CordRepBtree::Create(flat); return CordRepBtree::Append(root, {data, length}, alloc_hint); } // Create a new tree out of the specified array. // The returned node has a refcount of 1. static CordRep* NewTree(const char* data, size_t length, size_t alloc_hint) { if (length == 0) return nullptr; return NewBtree(data, length, alloc_hint); } namespace cord_internal { void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep) { assert(!data.empty()); rep->length = data.size(); rep->tag = EXTERNAL; rep->base = data.data(); VerifyTree(rep); } } // namespace cord_internal // Creates a CordRep from the provided string. If the string is large enough, // and not wasteful, we move the string into an external cord rep, preserving // the already allocated string contents. // Requires the provided string length to be larger than `kMaxInline`. static CordRep* CordRepFromString(std::string&& src) { assert(src.length() > cord_internal::kMaxInline); if ( // String is short: copy data to avoid external block overhead. src.size() <= kMaxBytesToCopy || // String is wasteful: copy data to avoid pinning too much unused memory. src.size() < src.capacity() / 2 ) { return NewTree(src.data(), src.size(), 0); } struct StringReleaser { void operator()(absl::string_view /* data */) {} std::string data; }; const absl::string_view original_data = src; auto* rep = static_cast<::absl::cord_internal::CordRepExternalImpl*>( absl::cord_internal::NewExternalRep(original_data, StringReleaser{std::move(src)})); // Moving src may have invalidated its data pointer, so adjust it. rep->base = rep->template get<0>().data.data(); return rep; } // -------------------------------------------------------------------- // Cord::InlineRep functions #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr unsigned char Cord::InlineRep::kMaxInline; #endif inline void Cord::InlineRep::set_data(const char* data, size_t n) { static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15"); data_.set_inline_data(data, n); } inline char* Cord::InlineRep::set_data(size_t n) { assert(n <= kMaxInline); ResetToEmpty(); set_inline_size(n); return data_.as_chars(); } inline void Cord::InlineRep::reduce_size(size_t n) { size_t tag = inline_size(); assert(tag <= kMaxInline); assert(tag >= n); tag -= n; memset(data_.as_chars() + tag, 0, n); set_inline_size(tag); } inline void Cord::InlineRep::remove_prefix(size_t n) { cord_internal::SmallMemmove(data_.as_chars(), data_.as_chars() + n, inline_size() - n); reduce_size(n); } // Returns `rep` converted into a CordRepBtree. // Directly returns `rep` if `rep` is already a CordRepBtree. static CordRepBtree* ForceBtree(CordRep* rep) { return rep->IsBtree() ? rep->btree() : CordRepBtree::Create(cord_internal::RemoveCrcNode(rep)); } void Cord::InlineRep::AppendTreeToInlined(CordRep* tree, MethodIdentifier method) { assert(!is_tree()); if (!data_.is_empty()) { CordRepFlat* flat = MakeFlatWithExtraCapacity(0); tree = CordRepBtree::Append(CordRepBtree::Create(flat), tree); } EmplaceTree(tree, method); } void Cord::InlineRep::AppendTreeToTree(CordRep* tree, MethodIdentifier method) { assert(is_tree()); const CordzUpdateScope scope(data_.cordz_info(), method); tree = CordRepBtree::Append(ForceBtree(data_.as_tree()), tree); SetTree(tree, scope); } void Cord::InlineRep::AppendTree(CordRep* tree, MethodIdentifier method) { assert(tree != nullptr); assert(tree->length != 0); assert(!tree->IsCrc()); if (data_.is_tree()) { AppendTreeToTree(tree, method); } else { AppendTreeToInlined(tree, method); } } void Cord::InlineRep::PrependTreeToInlined(CordRep* tree, MethodIdentifier method) { assert(!is_tree()); if (!data_.is_empty()) { CordRepFlat* flat = MakeFlatWithExtraCapacity(0); tree = CordRepBtree::Prepend(CordRepBtree::Create(flat), tree); } EmplaceTree(tree, method); } void Cord::InlineRep::PrependTreeToTree(CordRep* tree, MethodIdentifier method) { assert(is_tree()); const CordzUpdateScope scope(data_.cordz_info(), method); tree = CordRepBtree::Prepend(ForceBtree(data_.as_tree()), tree); SetTree(tree, scope); } void Cord::InlineRep::PrependTree(CordRep* tree, MethodIdentifier method) { assert(tree != nullptr); assert(tree->length != 0); assert(!tree->IsCrc()); if (data_.is_tree()) { PrependTreeToTree(tree, method); } else { PrependTreeToInlined(tree, method); } } // Searches for a non-full flat node at the rightmost leaf of the tree. If a // suitable leaf is found, the function will update the length field for all // nodes to account for the size increase. The append region address will be // written to region and the actual size increase will be written to size. static inline bool PrepareAppendRegion(CordRep* root, char** region, size_t* size, size_t max_length) { if (root->IsBtree() && root->refcount.IsOne()) { Span span = root->btree()->GetAppendBuffer(max_length); if (!span.empty()) { *region = span.data(); *size = span.size(); return true; } } CordRep* dst = root; if (!dst->IsFlat() || !dst->refcount.IsOne()) { *region = nullptr; *size = 0; return false; } const size_t in_use = dst->length; const size_t capacity = dst->flat()->Capacity(); if (in_use == capacity) { *region = nullptr; *size = 0; return false; } const size_t size_increase = std::min(capacity - in_use, max_length); dst->length += size_increase; *region = dst->flat()->Data() + in_use; *size = size_increase; return true; } void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) { assert(&src != this); assert(is_tree() || src.is_tree()); auto constexpr method = CordzUpdateTracker::kAssignCord; if (ABSL_PREDICT_TRUE(!is_tree())) { EmplaceTree(CordRep::Ref(src.as_tree()), src.data_, method); return; } CordRep* tree = as_tree(); if (CordRep* src_tree = src.tree()) { // Leave any existing `cordz_info` in place, and let MaybeTrackCord() // decide if this cord should be (or remains to be) sampled or not. data_.set_tree(CordRep::Ref(src_tree)); CordzInfo::MaybeTrackCord(data_, src.data_, method); } else { CordzInfo::MaybeUntrackCord(data_.cordz_info()); data_ = src.data_; } CordRep::Unref(tree); } void Cord::InlineRep::UnrefTree() { if (is_tree()) { CordzInfo::MaybeUntrackCord(data_.cordz_info()); CordRep::Unref(tree()); } } // -------------------------------------------------------------------- // Constructors and destructors Cord::Cord(absl::string_view src, MethodIdentifier method) : contents_(InlineData::kDefaultInit) { const size_t n = src.size(); if (n <= InlineRep::kMaxInline) { contents_.set_data(src.data(), n); } else { CordRep* rep = NewTree(src.data(), n, 0); contents_.EmplaceTree(rep, method); } } template > Cord::Cord(T&& src) : contents_(InlineData::kDefaultInit) { if (src.size() <= InlineRep::kMaxInline) { contents_.set_data(src.data(), src.size()); } else { CordRep* rep = CordRepFromString(std::forward(src)); contents_.EmplaceTree(rep, CordzUpdateTracker::kConstructorString); } } template Cord::Cord(std::string&& src); // The destruction code is separate so that the compiler can determine // that it does not need to call the destructor on a moved-from Cord. void Cord::DestroyCordSlow() { assert(contents_.is_tree()); CordzInfo::MaybeUntrackCord(contents_.cordz_info()); CordRep::Unref(VerifyTree(contents_.as_tree())); } // -------------------------------------------------------------------- // Mutators void Cord::Clear() { if (CordRep* tree = contents_.clear()) { CordRep::Unref(tree); } } Cord& Cord::AssignLargeString(std::string&& src) { auto constexpr method = CordzUpdateTracker::kAssignString; assert(src.size() > kMaxBytesToCopy); CordRep* rep = CordRepFromString(std::move(src)); if (CordRep* tree = contents_.tree()) { CordzUpdateScope scope(contents_.cordz_info(), method); contents_.SetTree(rep, scope); CordRep::Unref(tree); } else { contents_.EmplaceTree(rep, method); } return *this; } Cord& Cord::operator=(absl::string_view src) { auto constexpr method = CordzUpdateTracker::kAssignString; const char* data = src.data(); size_t length = src.size(); CordRep* tree = contents_.tree(); if (length <= InlineRep::kMaxInline) { // Embed into this->contents_, which is somewhat subtle: // - MaybeUntrackCord must be called before Unref(tree). // - MaybeUntrackCord must be called before set_data() clobbers cordz_info. // - set_data() must be called before Unref(tree) as it may reference tree. if (tree != nullptr) CordzInfo::MaybeUntrackCord(contents_.cordz_info()); contents_.set_data(data, length); if (tree != nullptr) CordRep::Unref(tree); return *this; } if (tree != nullptr) { CordzUpdateScope scope(contents_.cordz_info(), method); if (tree->IsFlat() && tree->flat()->Capacity() >= length && tree->refcount.IsOne()) { // Copy in place if the existing FLAT node is reusable. memmove(tree->flat()->Data(), data, length); tree->length = length; VerifyTree(tree); return *this; } contents_.SetTree(NewTree(data, length, 0), scope); CordRep::Unref(tree); } else { contents_.EmplaceTree(NewTree(data, length, 0), method); } return *this; } // TODO(sanjay): Move to Cord::InlineRep section of file. For now, // we keep it here to make diffs easier. void Cord::InlineRep::AppendArray(absl::string_view src, MethodIdentifier method) { MaybeRemoveEmptyCrcNode(); if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined. size_t appended = 0; CordRep* rep = tree(); const CordRep* const root = rep; CordzUpdateScope scope(root ? cordz_info() : nullptr, method); if (root != nullptr) { rep = cord_internal::RemoveCrcNode(rep); char* region; if (PrepareAppendRegion(rep, ®ion, &appended, src.size())) { memcpy(region, src.data(), appended); } } else { // Try to fit in the inline buffer if possible. size_t inline_length = inline_size(); if (src.size() <= kMaxInline - inline_length) { // Append new data to embedded array set_inline_size(inline_length + src.size()); memcpy(data_.as_chars() + inline_length, src.data(), src.size()); return; } // Allocate flat to be a perfect fit on first append exceeding inlined size. // Subsequent growth will use amortized growth until we reach maximum flat // size. rep = CordRepFlat::New(inline_length + src.size()); appended = std::min(src.size(), rep->flat()->Capacity() - inline_length); memcpy(rep->flat()->Data(), data_.as_chars(), inline_length); memcpy(rep->flat()->Data() + inline_length, src.data(), appended); rep->length = inline_length + appended; } src.remove_prefix(appended); if (src.empty()) { CommitTree(root, rep, scope, method); return; } // TODO(b/192061034): keep legacy 10% growth rate: consider other rates. rep = ForceBtree(rep); const size_t min_growth = std::max(rep->length / 10, src.size()); rep = CordRepBtree::Append(rep->btree(), src, min_growth - src.size()); CommitTree(root, rep, scope, method); } inline CordRep* Cord::TakeRep() const& { return CordRep::Ref(contents_.tree()); } inline CordRep* Cord::TakeRep() && { CordRep* rep = contents_.tree(); contents_.clear(); return rep; } template inline void Cord::AppendImpl(C&& src) { auto constexpr method = CordzUpdateTracker::kAppendCord; contents_.MaybeRemoveEmptyCrcNode(); if (src.empty()) return; if (empty()) { // Since destination is empty, we can avoid allocating a node, if (src.contents_.is_tree()) { // by taking the tree directly CordRep* rep = cord_internal::RemoveCrcNode(std::forward(src).TakeRep()); contents_.EmplaceTree(rep, method); } else { // or copying over inline data contents_.data_ = src.contents_.data_; } return; } // For short cords, it is faster to copy data if there is room in dst. const size_t src_size = src.contents_.size(); if (src_size <= kMaxBytesToCopy) { CordRep* src_tree = src.contents_.tree(); if (src_tree == nullptr) { // src has embedded data. contents_.AppendArray({src.contents_.data(), src_size}, method); return; } if (src_tree->IsFlat()) { // src tree just has one flat node. contents_.AppendArray({src_tree->flat()->Data(), src_size}, method); return; } if (&src == this) { // ChunkIterator below assumes that src is not modified during traversal. Append(Cord(src)); return; } // TODO(mec): Should we only do this if "dst" has space? for (absl::string_view chunk : src.Chunks()) { Append(chunk); } return; } // Guaranteed to be a tree (kMaxBytesToCopy > kInlinedSize) CordRep* rep = cord_internal::RemoveCrcNode(std::forward(src).TakeRep()); contents_.AppendTree(rep, CordzUpdateTracker::kAppendCord); } static CordRep::ExtractResult ExtractAppendBuffer(CordRep* rep, size_t min_capacity) { switch (rep->tag) { case cord_internal::BTREE: return CordRepBtree::ExtractAppendBuffer(rep->btree(), min_capacity); default: if (rep->IsFlat() && rep->refcount.IsOne() && rep->flat()->Capacity() - rep->length >= min_capacity) { return {nullptr, rep}; } return {rep, nullptr}; } } static CordBuffer CreateAppendBuffer(InlineData& data, size_t block_size, size_t capacity) { // Watch out for overflow, people can ask for size_t::max(). const size_t size = data.inline_size(); const size_t max_capacity = std::numeric_limits::max() - size; capacity = (std::min)(max_capacity, capacity) + size; CordBuffer buffer = block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity) : CordBuffer::CreateWithDefaultLimit(capacity); cord_internal::SmallMemmove(buffer.data(), data.as_chars(), size); buffer.SetLength(size); data = {}; return buffer; } CordBuffer Cord::GetAppendBufferSlowPath(size_t block_size, size_t capacity, size_t min_capacity) { auto constexpr method = CordzUpdateTracker::kGetAppendBuffer; CordRep* tree = contents_.tree(); if (tree != nullptr) { CordzUpdateScope scope(contents_.cordz_info(), method); CordRep::ExtractResult result = ExtractAppendBuffer(tree, min_capacity); if (result.extracted != nullptr) { contents_.SetTreeOrEmpty(result.tree, scope); return CordBuffer(result.extracted->flat()); } return block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity) : CordBuffer::CreateWithDefaultLimit(capacity); } return CreateAppendBuffer(contents_.data_, block_size, capacity); } void Cord::Append(const Cord& src) { AppendImpl(src); } void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); } template > void Cord::Append(T&& src) { if (src.size() <= kMaxBytesToCopy) { Append(absl::string_view(src)); } else { CordRep* rep = CordRepFromString(std::forward(src)); contents_.AppendTree(rep, CordzUpdateTracker::kAppendString); } } template void Cord::Append(std::string&& src); void Cord::Prepend(const Cord& src) { contents_.MaybeRemoveEmptyCrcNode(); if (src.empty()) return; CordRep* src_tree = src.contents_.tree(); if (src_tree != nullptr) { CordRep::Ref(src_tree); contents_.PrependTree(cord_internal::RemoveCrcNode(src_tree), CordzUpdateTracker::kPrependCord); return; } // `src` cord is inlined. absl::string_view src_contents(src.contents_.data(), src.contents_.size()); return Prepend(src_contents); } void Cord::PrependArray(absl::string_view src, MethodIdentifier method) { contents_.MaybeRemoveEmptyCrcNode(); if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined. if (!contents_.is_tree()) { size_t cur_size = contents_.inline_size(); if (cur_size + src.size() <= InlineRep::kMaxInline) { // Use embedded storage. InlineData data; data.set_inline_size(cur_size + src.size()); memcpy(data.as_chars(), src.data(), src.size()); memcpy(data.as_chars() + src.size(), contents_.data(), cur_size); contents_.data_ = data; return; } } CordRep* rep = NewTree(src.data(), src.size(), 0); contents_.PrependTree(rep, method); } void Cord::AppendPrecise(absl::string_view src, MethodIdentifier method) { assert(!src.empty()); assert(src.size() <= cord_internal::kMaxFlatLength); if (contents_.remaining_inline_capacity() >= src.size()) { const size_t inline_length = contents_.inline_size(); contents_.set_inline_size(inline_length + src.size()); memcpy(contents_.data_.as_chars() + inline_length, src.data(), src.size()); } else { contents_.AppendTree(CordRepFlat::Create(src), method); } } void Cord::PrependPrecise(absl::string_view src, MethodIdentifier method) { assert(!src.empty()); assert(src.size() <= cord_internal::kMaxFlatLength); if (contents_.remaining_inline_capacity() >= src.size()) { const size_t cur_size = contents_.inline_size(); InlineData data; data.set_inline_size(cur_size + src.size()); memcpy(data.as_chars(), src.data(), src.size()); memcpy(data.as_chars() + src.size(), contents_.data(), cur_size); contents_.data_ = data; } else { contents_.PrependTree(CordRepFlat::Create(src), method); } } template > inline void Cord::Prepend(T&& src) { if (src.size() <= kMaxBytesToCopy) { Prepend(absl::string_view(src)); } else { CordRep* rep = CordRepFromString(std::forward(src)); contents_.PrependTree(rep, CordzUpdateTracker::kPrependString); } } template void Cord::Prepend(std::string&& src); void Cord::RemovePrefix(size_t n) { ABSL_INTERNAL_CHECK(n <= size(), absl::StrCat("Requested prefix size ", n, " exceeds Cord's size ", size())); contents_.MaybeRemoveEmptyCrcNode(); CordRep* tree = contents_.tree(); if (tree == nullptr) { contents_.remove_prefix(n); } else { auto constexpr method = CordzUpdateTracker::kRemovePrefix; CordzUpdateScope scope(contents_.cordz_info(), method); tree = cord_internal::RemoveCrcNode(tree); if (n >= tree->length) { CordRep::Unref(tree); tree = nullptr; } else if (tree->IsBtree()) { CordRep* old = tree; tree = tree->btree()->SubTree(n, tree->length - n); CordRep::Unref(old); } else if (tree->IsSubstring() && tree->refcount.IsOne()) { tree->substring()->start += n; tree->length -= n; } else { CordRep* rep = CordRepSubstring::Substring(tree, n, tree->length - n); CordRep::Unref(tree); tree = rep; } contents_.SetTreeOrEmpty(tree, scope); } } void Cord::RemoveSuffix(size_t n) { ABSL_INTERNAL_CHECK(n <= size(), absl::StrCat("Requested suffix size ", n, " exceeds Cord's size ", size())); contents_.MaybeRemoveEmptyCrcNode(); CordRep* tree = contents_.tree(); if (tree == nullptr) { contents_.reduce_size(n); } else { auto constexpr method = CordzUpdateTracker::kRemoveSuffix; CordzUpdateScope scope(contents_.cordz_info(), method); tree = cord_internal::RemoveCrcNode(tree); if (n >= tree->length) { CordRep::Unref(tree); tree = nullptr; } else if (tree->IsBtree()) { tree = CordRepBtree::RemoveSuffix(tree->btree(), n); } else if (!tree->IsExternal() && tree->refcount.IsOne()) { assert(tree->IsFlat() || tree->IsSubstring()); tree->length -= n; } else { CordRep* rep = CordRepSubstring::Substring(tree, 0, tree->length - n); CordRep::Unref(tree); tree = rep; } contents_.SetTreeOrEmpty(tree, scope); } } Cord Cord::Subcord(size_t pos, size_t new_size) const { Cord sub_cord; size_t length = size(); if (pos > length) pos = length; if (new_size > length - pos) new_size = length - pos; if (new_size == 0) return sub_cord; CordRep* tree = contents_.tree(); if (tree == nullptr) { sub_cord.contents_.set_data(contents_.data() + pos, new_size); return sub_cord; } if (new_size <= InlineRep::kMaxInline) { sub_cord.contents_.set_inline_size(new_size); char* dest = sub_cord.contents_.data_.as_chars(); Cord::ChunkIterator it = chunk_begin(); it.AdvanceBytes(pos); size_t remaining_size = new_size; while (remaining_size > it->size()) { cord_internal::SmallMemmove(dest, it->data(), it->size()); remaining_size -= it->size(); dest += it->size(); ++it; } cord_internal::SmallMemmove(dest, it->data(), remaining_size); return sub_cord; } tree = cord_internal::SkipCrcNode(tree); if (tree->IsBtree()) { tree = tree->btree()->SubTree(pos, new_size); } else { tree = CordRepSubstring::Substring(tree, pos, new_size); } sub_cord.contents_.EmplaceTree(tree, contents_.data_, CordzUpdateTracker::kSubCord); return sub_cord; } // -------------------------------------------------------------------- // Comparators namespace { int ClampResult(int memcmp_res) { return static_cast(memcmp_res > 0) - static_cast(memcmp_res < 0); } int CompareChunks(absl::string_view* lhs, absl::string_view* rhs, size_t* size_to_compare) { size_t compared_size = std::min(lhs->size(), rhs->size()); assert(*size_to_compare >= compared_size); *size_to_compare -= compared_size; int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size); if (memcmp_res != 0) return memcmp_res; lhs->remove_prefix(compared_size); rhs->remove_prefix(compared_size); return 0; } // This overload set computes comparison results from memcmp result. This // interface is used inside GenericCompare below. Different implementations // are specialized for int and bool. For int we clamp result to {-1, 0, 1} // set. For bool we just interested in "value == 0". template ResultType ComputeCompareResult(int memcmp_res) { return ClampResult(memcmp_res); } template <> bool ComputeCompareResult(int memcmp_res) { return memcmp_res == 0; } } // namespace // Helper routine. Locates the first flat or external chunk of the Cord without // initializing the iterator, and returns a string_view referencing the data. inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const { if (!is_tree()) { return absl::string_view(data_.as_chars(), data_.inline_size()); } CordRep* node = cord_internal::SkipCrcNode(tree()); if (node->IsFlat()) { return absl::string_view(node->flat()->Data(), node->length); } if (node->IsExternal()) { return absl::string_view(node->external()->base, node->length); } if (node->IsBtree()) { CordRepBtree* tree = node->btree(); int height = tree->height(); while (--height >= 0) { tree = tree->Edge(CordRepBtree::kFront)->btree(); } return tree->Data(tree->begin()); } // Get the child node if we encounter a SUBSTRING. size_t offset = 0; size_t length = node->length; assert(length != 0); if (node->IsSubstring()) { offset = node->substring()->start; node = node->substring()->child; } if (node->IsFlat()) { return absl::string_view(node->flat()->Data() + offset, length); } assert(node->IsExternal() && "Expect FLAT or EXTERNAL node here"); return absl::string_view(node->external()->base + offset, length); } void Cord::SetCrcCordState(crc_internal::CrcCordState state) { auto constexpr method = CordzUpdateTracker::kSetExpectedChecksum; if (empty()) { contents_.MaybeRemoveEmptyCrcNode(); CordRep* rep = CordRepCrc::New(nullptr, std::move(state)); contents_.EmplaceTree(rep, method); } else if (!contents_.is_tree()) { CordRep* rep = contents_.MakeFlatWithExtraCapacity(0); rep = CordRepCrc::New(rep, std::move(state)); contents_.EmplaceTree(rep, method); } else { const CordzUpdateScope scope(contents_.data_.cordz_info(), method); CordRep* rep = CordRepCrc::New(contents_.data_.as_tree(), std::move(state)); contents_.SetTree(rep, scope); } } void Cord::SetExpectedChecksum(uint32_t crc) { // Construct a CrcCordState with a single chunk. crc_internal::CrcCordState state; state.mutable_rep()->prefix_crc.push_back( crc_internal::CrcCordState::PrefixCrc(size(), absl::crc32c_t{crc})); SetCrcCordState(std::move(state)); } const crc_internal::CrcCordState* Cord::MaybeGetCrcCordState() const { if (!contents_.is_tree() || !contents_.tree()->IsCrc()) { return nullptr; } return &contents_.tree()->crc()->crc_cord_state; } absl::optional Cord::ExpectedChecksum() const { if (!contents_.is_tree() || !contents_.tree()->IsCrc()) { return absl::nullopt; } return static_cast( contents_.tree()->crc()->crc_cord_state.Checksum()); } inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size, size_t size_to_compare) const { auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) { if (!chunk->empty()) return true; ++*it; if (it->bytes_remaining_ == 0) return false; *chunk = **it; return true; }; Cord::ChunkIterator lhs_it = chunk_begin(); // compared_size is inside first chunk. absl::string_view lhs_chunk = (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view(); assert(compared_size <= lhs_chunk.size()); assert(compared_size <= rhs.size()); lhs_chunk.remove_prefix(compared_size); rhs.remove_prefix(compared_size); size_to_compare -= compared_size; // skip already compared size. while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) { int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare); if (comparison_result != 0) return comparison_result; if (size_to_compare == 0) return 0; } return static_cast(rhs.empty()) - static_cast(lhs_chunk.empty()); } inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size, size_t size_to_compare) const { auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) { if (!chunk->empty()) return true; ++*it; if (it->bytes_remaining_ == 0) return false; *chunk = **it; return true; }; Cord::ChunkIterator lhs_it = chunk_begin(); Cord::ChunkIterator rhs_it = rhs.chunk_begin(); // compared_size is inside both first chunks. absl::string_view lhs_chunk = (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view(); absl::string_view rhs_chunk = (rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view(); assert(compared_size <= lhs_chunk.size()); assert(compared_size <= rhs_chunk.size()); lhs_chunk.remove_prefix(compared_size); rhs_chunk.remove_prefix(compared_size); size_to_compare -= compared_size; // skip already compared size. while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) { int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare); if (memcmp_res != 0) return memcmp_res; if (size_to_compare == 0) return 0; } return static_cast(rhs_chunk.empty()) - static_cast(lhs_chunk.empty()); } inline absl::string_view Cord::GetFirstChunk(const Cord& c) { if (c.empty()) return {}; return c.contents_.FindFlatStartPiece(); } inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) { return sv; } // Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed // that 'size_to_compare' is greater that size of smallest of first chunks. template ResultType GenericCompare(const Cord& lhs, const RHS& rhs, size_t size_to_compare) { absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs); absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs); size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size()); assert(size_to_compare >= compared_size); int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size); if (compared_size == size_to_compare || memcmp_res != 0) { return ComputeCompareResult(memcmp_res); } return ComputeCompareResult( lhs.CompareSlowPath(rhs, compared_size, size_to_compare)); } bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const { return GenericCompare(*this, rhs, size_to_compare); } bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const { return GenericCompare(*this, rhs, size_to_compare); } template inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) { size_t lhs_size = lhs.size(); size_t rhs_size = rhs.size(); if (lhs_size == rhs_size) { return GenericCompare(lhs, rhs, lhs_size); } if (lhs_size < rhs_size) { auto data_comp_res = GenericCompare(lhs, rhs, lhs_size); return data_comp_res == 0 ? -1 : data_comp_res; } auto data_comp_res = GenericCompare(lhs, rhs, rhs_size); return data_comp_res == 0 ? +1 : data_comp_res; } int Cord::Compare(absl::string_view rhs) const { return SharedCompareImpl(*this, rhs); } int Cord::CompareImpl(const Cord& rhs) const { return SharedCompareImpl(*this, rhs); } bool Cord::EndsWith(absl::string_view rhs) const { size_t my_size = size(); size_t rhs_size = rhs.size(); if (my_size < rhs_size) return false; Cord tmp(*this); tmp.RemovePrefix(my_size - rhs_size); return tmp.EqualsImpl(rhs, rhs_size); } bool Cord::EndsWith(const Cord& rhs) const { size_t my_size = size(); size_t rhs_size = rhs.size(); if (my_size < rhs_size) return false; Cord tmp(*this); tmp.RemovePrefix(my_size - rhs_size); return tmp.EqualsImpl(rhs, rhs_size); } // -------------------------------------------------------------------- // Misc. Cord::operator std::string() const { std::string s; absl::CopyCordToString(*this, &s); return s; } void CopyCordToString(const Cord& src, std::string* dst) { if (!src.contents_.is_tree()) { src.contents_.CopyTo(dst); } else { absl::strings_internal::STLStringResizeUninitialized(dst, src.size()); src.CopyToArraySlowPath(&(*dst)[0]); } } void Cord::CopyToArraySlowPath(char* dst) const { assert(contents_.is_tree()); absl::string_view fragment; if (GetFlatAux(contents_.tree(), &fragment)) { memcpy(dst, fragment.data(), fragment.size()); return; } for (absl::string_view chunk : Chunks()) { memcpy(dst, chunk.data(), chunk.size()); dst += chunk.size(); } } Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) { ABSL_HARDENING_ASSERT(bytes_remaining_ >= n && "Attempted to iterate past `end()`"); Cord subcord; auto constexpr method = CordzUpdateTracker::kCordReader; if (n <= InlineRep::kMaxInline) { // Range to read fits in inline data. Flatten it. char* data = subcord.contents_.set_data(n); while (n > current_chunk_.size()) { memcpy(data, current_chunk_.data(), current_chunk_.size()); data += current_chunk_.size(); n -= current_chunk_.size(); ++*this; } memcpy(data, current_chunk_.data(), n); if (n < current_chunk_.size()) { RemoveChunkPrefix(n); } else if (n > 0) { ++*this; } return subcord; } if (btree_reader_) { size_t chunk_size = current_chunk_.size(); if (n <= chunk_size && n <= kMaxBytesToCopy) { subcord = Cord(current_chunk_.substr(0, n), method); if (n < chunk_size) { current_chunk_.remove_prefix(n); } else { current_chunk_ = btree_reader_.Next(); } } else { CordRep* rep; current_chunk_ = btree_reader_.Read(n, chunk_size, rep); subcord.contents_.EmplaceTree(rep, method); } bytes_remaining_ -= n; return subcord; } // Short circuit if reading the entire data edge. assert(current_leaf_ != nullptr); if (n == current_leaf_->length) { bytes_remaining_ = 0; current_chunk_ = {}; CordRep* tree = CordRep::Ref(current_leaf_); subcord.contents_.EmplaceTree(VerifyTree(tree), method); return subcord; } // From this point on, we need a partial substring node. // Get pointer to the underlying flat or external data payload and // compute data pointer and offset into current flat or external. CordRep* payload = current_leaf_->IsSubstring() ? current_leaf_->substring()->child : current_leaf_; const char* data = payload->IsExternal() ? payload->external()->base : payload->flat()->Data(); const size_t offset = static_cast(current_chunk_.data() - data); auto* tree = CordRepSubstring::Substring(payload, offset, n); subcord.contents_.EmplaceTree(VerifyTree(tree), method); bytes_remaining_ -= n; current_chunk_.remove_prefix(n); return subcord; } char Cord::operator[](size_t i) const { ABSL_HARDENING_ASSERT(i < size()); size_t offset = i; const CordRep* rep = contents_.tree(); if (rep == nullptr) { return contents_.data()[i]; } rep = cord_internal::SkipCrcNode(rep); while (true) { assert(rep != nullptr); assert(offset < rep->length); if (rep->IsFlat()) { // Get the "i"th character directly from the flat array. return rep->flat()->Data()[offset]; } else if (rep->IsBtree()) { return rep->btree()->GetCharacter(offset); } else if (rep->IsExternal()) { // Get the "i"th character from the external array. return rep->external()->base[offset]; } else { // This must be a substring a node, so bypass it to get to the child. assert(rep->IsSubstring()); offset += rep->substring()->start; rep = rep->substring()->child; } } } namespace { // Tests whether the sequence of chunks beginning at `position` starts with // `needle`. // // REQUIRES: remaining `absl::Cord` starting at `position` is greater than or // equal to `needle.size()`. bool IsSubstringInCordAt(absl::Cord::CharIterator position, absl::string_view needle) { auto haystack_chunk = absl::Cord::ChunkRemaining(position); while (true) { // Precondition is that `absl::Cord::ChunkRemaining(position)` is not // empty. This assert will trigger if that is not true. assert(!haystack_chunk.empty()); auto min_length = std::min(haystack_chunk.size(), needle.size()); if (!absl::ConsumePrefix(&needle, haystack_chunk.substr(0, min_length))) { return false; } if (needle.empty()) { return true; } absl::Cord::Advance(&position, min_length); haystack_chunk = absl::Cord::ChunkRemaining(position); } } } // namespace // A few options how this could be implemented: // (a) Flatten the Cord and find, i.e. // haystack.Flatten().find(needle) // For large 'haystack' (where Cord makes sense to be used), this copies // the whole 'haystack' and can be slow. // (b) Use std::search, i.e. // std::search(haystack.char_begin(), haystack.char_end(), // needle.begin(), needle.end()) // This avoids the copy, but compares one byte at a time, and branches a // lot every time it has to advance. It is also not possible to use // std::search as is, because CharIterator is only an input iterator, not a // forward iterator. // (c) Use string_view::find in each fragment, and specifically handle fragment // boundaries. // // This currently implements option (b). absl::Cord::CharIterator absl::Cord::FindImpl(CharIterator it, absl::string_view needle) const { // Ensure preconditions are met by callers first. // Needle must not be empty. assert(!needle.empty()); // Haystack must be at least as large as needle. assert(it.chunk_iterator_.bytes_remaining_ >= needle.size()); // Cord is a sequence of chunks. To find `needle` we go chunk by chunk looking // for the first char of needle, up until we have advanced `N` defined as // `haystack.size() - needle.size()`. If we find the first char of needle at // `P` and `P` is less than `N`, we then call `IsSubstringInCordAt` to // see if this is the needle. If not, we advance to `P + 1` and try again. while (it.chunk_iterator_.bytes_remaining_ >= needle.size()) { auto haystack_chunk = Cord::ChunkRemaining(it); assert(!haystack_chunk.empty()); // Look for the first char of `needle` in the current chunk. auto idx = haystack_chunk.find(needle.front()); if (idx == absl::string_view::npos) { // No potential match in this chunk, advance past it. Cord::Advance(&it, haystack_chunk.size()); continue; } // We found the start of a potential match in the chunk. Advance the // iterator and haystack chunk to the match the position. Cord::Advance(&it, idx); // Check if there is enough haystack remaining to actually have a match. if (it.chunk_iterator_.bytes_remaining_ < needle.size()) { break; } // Check if this is `needle`. if (IsSubstringInCordAt(it, needle)) { return it; } // No match, increment the iterator for the next attempt. Cord::Advance(&it, 1); } // If we got here, we did not find `needle`. return char_end(); } absl::Cord::CharIterator absl::Cord::Find(absl::string_view needle) const { if (needle.empty()) { return char_begin(); } if (needle.size() > size()) { return char_end(); } if (needle.size() == size()) { return *this == needle ? char_begin() : char_end(); } return FindImpl(char_begin(), needle); } namespace { // Tests whether the sequence of chunks beginning at `haystack` starts with the // sequence of chunks beginning at `needle_begin` and extending to `needle_end`. // // REQUIRES: remaining `absl::Cord` starting at `position` is greater than or // equal to `needle_end - needle_begin` and `advance`. bool IsSubcordInCordAt(absl::Cord::CharIterator haystack, absl::Cord::CharIterator needle_begin, absl::Cord::CharIterator needle_end) { while (needle_begin != needle_end) { auto haystack_chunk = absl::Cord::ChunkRemaining(haystack); assert(!haystack_chunk.empty()); auto needle_chunk = absl::Cord::ChunkRemaining(needle_begin); auto min_length = std::min(haystack_chunk.size(), needle_chunk.size()); if (haystack_chunk.substr(0, min_length) != needle_chunk.substr(0, min_length)) { return false; } absl::Cord::Advance(&haystack, min_length); absl::Cord::Advance(&needle_begin, min_length); } return true; } // Tests whether the sequence of chunks beginning at `position` starts with the // cord `needle`. // // REQUIRES: remaining `absl::Cord` starting at `position` is greater than or // equal to `needle.size()`. bool IsSubcordInCordAt(absl::Cord::CharIterator position, const absl::Cord& needle) { return IsSubcordInCordAt(position, needle.char_begin(), needle.char_end()); } } // namespace absl::Cord::CharIterator absl::Cord::Find(const absl::Cord& needle) const { if (needle.empty()) { return char_begin(); } const auto needle_size = needle.size(); if (needle_size > size()) { return char_end(); } if (needle_size == size()) { return *this == needle ? char_begin() : char_end(); } const auto needle_chunk = Cord::ChunkRemaining(needle.char_begin()); auto haystack_it = char_begin(); while (true) { haystack_it = FindImpl(haystack_it, needle_chunk); if (haystack_it == char_end() || haystack_it.chunk_iterator_.bytes_remaining_ < needle_size) { break; } // We found the first chunk of `needle` at `haystack_it` but not the entire // subcord. Advance past the first chunk and check for the remainder. auto haystack_advanced_it = haystack_it; auto needle_it = needle.char_begin(); Cord::Advance(&haystack_advanced_it, needle_chunk.size()); Cord::Advance(&needle_it, needle_chunk.size()); if (IsSubcordInCordAt(haystack_advanced_it, needle_it, needle.char_end())) { return haystack_it; } Cord::Advance(&haystack_it, 1); if (haystack_it.chunk_iterator_.bytes_remaining_ < needle_size) { break; } if (haystack_it.chunk_iterator_.bytes_remaining_ == needle_size) { // Special case, if there is exactly `needle_size` bytes remaining, the // subcord is either at `haystack_it` or not at all. if (IsSubcordInCordAt(haystack_it, needle)) { return haystack_it; } break; } } return char_end(); } bool Cord::Contains(absl::string_view rhs) const { return rhs.empty() || Find(rhs) != char_end(); } bool Cord::Contains(const absl::Cord& rhs) const { return rhs.empty() || Find(rhs) != char_end(); } absl::string_view Cord::FlattenSlowPath() { assert(contents_.is_tree()); size_t total_size = size(); CordRep* new_rep; char* new_buffer; // Try to put the contents into a new flat rep. If they won't fit in the // biggest possible flat node, use an external rep instead. if (total_size <= kMaxFlatLength) { new_rep = CordRepFlat::New(total_size); new_rep->length = total_size; new_buffer = new_rep->flat()->Data(); CopyToArraySlowPath(new_buffer); } else { new_buffer = std::allocator().allocate(total_size); CopyToArraySlowPath(new_buffer); new_rep = absl::cord_internal::NewExternalRep( absl::string_view(new_buffer, total_size), [](absl::string_view s) { std::allocator().deallocate(const_cast(s.data()), s.size()); }); } CordzUpdateScope scope(contents_.cordz_info(), CordzUpdateTracker::kFlatten); CordRep::Unref(contents_.as_tree()); contents_.SetTree(new_rep, scope); return absl::string_view(new_buffer, total_size); } /* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) { assert(rep != nullptr); if (rep->length == 0) { *fragment = absl::string_view(); return true; } rep = cord_internal::SkipCrcNode(rep); if (rep->IsFlat()) { *fragment = absl::string_view(rep->flat()->Data(), rep->length); return true; } else if (rep->IsExternal()) { *fragment = absl::string_view(rep->external()->base, rep->length); return true; } else if (rep->IsBtree()) { return rep->btree()->IsFlat(fragment); } else if (rep->IsSubstring()) { CordRep* child = rep->substring()->child; if (child->IsFlat()) { *fragment = absl::string_view( child->flat()->Data() + rep->substring()->start, rep->length); return true; } else if (child->IsExternal()) { *fragment = absl::string_view( child->external()->base + rep->substring()->start, rep->length); return true; } else if (child->IsBtree()) { return child->btree()->IsFlat(rep->substring()->start, rep->length, fragment); } } return false; } /* static */ void Cord::ForEachChunkAux( absl::cord_internal::CordRep* rep, absl::FunctionRef callback) { assert(rep != nullptr); if (rep->length == 0) return; rep = cord_internal::SkipCrcNode(rep); if (rep->IsBtree()) { ChunkIterator it(rep), end; while (it != end) { callback(*it); ++it; } return; } // This is a leaf node, so invoke our callback. absl::cord_internal::CordRep* current_node = cord_internal::SkipCrcNode(rep); absl::string_view chunk; bool success = GetFlatAux(current_node, &chunk); assert(success); if (success) { callback(chunk); } } static void DumpNode(CordRep* rep, bool include_data, std::ostream* os, int indent) { const int kIndentStep = 1; absl::InlinedVector stack; absl::InlinedVector indents; for (;;) { *os << std::setw(3) << rep->refcount.Get(); *os << " " << std::setw(7) << rep->length; *os << " ["; if (include_data) *os << static_cast(rep); *os << "]"; *os << " " << std::setw(indent) << ""; bool leaf = false; if (rep == nullptr) { *os << "NULL\n"; leaf = true; } else if (rep->IsCrc()) { *os << "CRC crc=" << rep->crc()->crc_cord_state.Checksum() << "\n"; indent += kIndentStep; rep = rep->crc()->child; } else if (rep->IsSubstring()) { *os << "SUBSTRING @ " << rep->substring()->start << "\n"; indent += kIndentStep; rep = rep->substring()->child; } else { // Leaf or ring leaf = true; if (rep->IsExternal()) { *os << "EXTERNAL ["; if (include_data) *os << absl::CEscape(std::string(rep->external()->base, rep->length)); *os << "]\n"; } else if (rep->IsFlat()) { *os << "FLAT cap=" << rep->flat()->Capacity() << " ["; if (include_data) *os << absl::CEscape(std::string(rep->flat()->Data(), rep->length)); *os << "]\n"; } else { CordRepBtree::Dump(rep, /*label=*/"", include_data, *os); } } if (leaf) { if (stack.empty()) break; rep = stack.back(); stack.pop_back(); indent = indents.back(); indents.pop_back(); } } ABSL_INTERNAL_CHECK(indents.empty(), ""); } static std::string ReportError(CordRep* root, CordRep* node) { std::ostringstream buf; buf << "Error at node " << node << " in:"; DumpNode(root, true, &buf); return buf.str(); } static bool VerifyNode(CordRep* root, CordRep* start_node) { absl::InlinedVector worklist; worklist.push_back(start_node); do { CordRep* node = worklist.back(); worklist.pop_back(); ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node)); if (node != root) { ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node)); ABSL_INTERNAL_CHECK(!node->IsCrc(), ReportError(root, node)); } if (node->IsFlat()) { ABSL_INTERNAL_CHECK(node->length <= node->flat()->Capacity(), ReportError(root, node)); } else if (node->IsExternal()) { ABSL_INTERNAL_CHECK(node->external()->base != nullptr, ReportError(root, node)); } else if (node->IsSubstring()) { ABSL_INTERNAL_CHECK( node->substring()->start < node->substring()->child->length, ReportError(root, node)); ABSL_INTERNAL_CHECK(node->substring()->start + node->length <= node->substring()->child->length, ReportError(root, node)); } else if (node->IsCrc()) { ABSL_INTERNAL_CHECK( node->crc()->child != nullptr || node->crc()->length == 0, ReportError(root, node)); if (node->crc()->child != nullptr) { ABSL_INTERNAL_CHECK(node->crc()->length == node->crc()->child->length, ReportError(root, node)); worklist.push_back(node->crc()->child); } } } while (!worklist.empty()); return true; } std::ostream& operator<<(std::ostream& out, const Cord& cord) { for (absl::string_view chunk : cord.Chunks()) { out.write(chunk.data(), static_cast(chunk.size())); } return out; } namespace strings_internal { size_t CordTestAccess::FlatOverhead() { return cord_internal::kFlatOverhead; } size_t CordTestAccess::MaxFlatLength() { return cord_internal::kMaxFlatLength; } size_t CordTestAccess::FlatTagToLength(uint8_t tag) { return cord_internal::TagToLength(tag); } uint8_t CordTestAccess::LengthToTag(size_t s) { ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s)); return cord_internal::AllocatedSizeToTag(s + cord_internal::kFlatOverhead); } size_t CordTestAccess::SizeofCordRepExternal() { return sizeof(CordRepExternal); } size_t CordTestAccess::SizeofCordRepSubstring() { return sizeof(CordRepSubstring); } } // namespace strings_internal ABSL_NAMESPACE_END } // namespace absl