// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/poisson_distribution.h" #include #include #include #include #include #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/macros.h" #include "absl/container/flat_hash_map.h" #include "absl/random/internal/chi_square.h" #include "absl/random/internal/distribution_test_util.h" #include "absl/random/internal/sequence_urbg.h" #include "absl/random/random.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_replace.h" #include "absl/strings/strip.h" // Notes about generating poisson variates: // // It is unlikely that any implementation of std::poisson_distribution // will be stable over time and across library implementations. For instance // the three different poisson variate generators listed below all differ: // // https://github.com/ampl/gsl/tree/master/randist/poisson.c // * GSL uses a gamma + binomial + knuth method to compute poisson variates. // // https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.tcc // * GCC uses the Devroye rejection algorithm, based on // Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, // New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!), ~p.511 // http://www.nrbook.com/devroye/ // // https://github.com/llvm-mirror/libcxx/blob/master/include/random // * CLANG uses a different rejection method, which appears to include a // normal-distribution approximation and an exponential distribution to // compute the threshold, including a similar factorial approximation to this // one, but it is unclear where the algorithm comes from, exactly. // namespace { using absl::random_internal::kChiSquared; // The PoissonDistributionInterfaceTest provides a basic test that // absl::poisson_distribution conforms to the interface and serialization // requirements imposed by [rand.req.dist] for the common integer types. template class PoissonDistributionInterfaceTest : public ::testing::Test {}; using IntTypes = ::testing::Types; TYPED_TEST_CASE(PoissonDistributionInterfaceTest, IntTypes); TYPED_TEST(PoissonDistributionInterfaceTest, SerializeTest) { using param_type = typename absl::poisson_distribution::param_type; const double kMax = std::min(1e10 /* assertion limit */, static_cast(std::numeric_limits::max())); const double kParams[] = { // Cases around 1. 1, // std::nextafter(1.0, 0.0), // 1 - epsilon std::nextafter(1.0, 2.0), // 1 + epsilon // Arbitrary values. 1e-8, 1e-4, 0.0000005, // ~7.2e-7 0.2, // ~0.2x 0.5, // 0.72 2, // ~2.8 20, // 3x ~9.6 100, 1e4, 1e8, 1.5e9, 1e20, // Boundary cases. std::numeric_limits::max(), std::numeric_limits::epsilon(), std::nextafter(std::numeric_limits::min(), 1.0), // min + epsilon std::numeric_limits::min(), // smallest normal std::numeric_limits::denorm_min(), // smallest denorm std::numeric_limits::min() / 2, // denorm std::nextafter(std::numeric_limits::min(), 0.0), // denorm_max }; constexpr int kCount = 1000; absl::InsecureBitGen gen; for (const double m : kParams) { const double mean = std::min(kMax, m); const param_type param(mean); // Validate parameters. absl::poisson_distribution before(mean); EXPECT_EQ(before.mean(), param.mean()); { absl::poisson_distribution via_param(param); EXPECT_EQ(via_param, before); EXPECT_EQ(via_param.param(), before.param()); } // Smoke test. auto sample_min = before.max(); auto sample_max = before.min(); for (int i = 0; i < kCount; i++) { auto sample = before(gen); EXPECT_GE(sample, before.min()); EXPECT_LE(sample, before.max()); if (sample > sample_max) sample_max = sample; if (sample < sample_min) sample_min = sample; } ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", +sample_min, ", ", +sample_max)); // Validate stream serialization. std::stringstream ss; ss << before; absl::poisson_distribution after(3.8); EXPECT_NE(before.mean(), after.mean()); EXPECT_NE(before.param(), after.param()); EXPECT_NE(before, after); ss >> after; EXPECT_EQ(before.mean(), after.mean()) // << ss.str() << " " // << (ss.good() ? "good " : "") // << (ss.bad() ? "bad " : "") // << (ss.eof() ? "eof " : "") // << (ss.fail() ? "fail " : ""); } } // See http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm class PoissonModel { public: explicit PoissonModel(double mean) : mean_(mean) {} double mean() const { return mean_; } double variance() const { return mean_; } double stddev() const { return std::sqrt(variance()); } double skew() const { return 1.0 / mean_; } double kurtosis() const { return 3.0 + 1.0 / mean_; } // InitCDF() initializes the CDF for the distribution parameters. void InitCDF(); // The InverseCDF, or the Percent-point function returns x, P(x) < v. struct CDF { size_t index; double pmf; double cdf; }; CDF InverseCDF(double p) { CDF target{0, 0, p}; auto it = std::upper_bound( std::begin(cdf_), std::end(cdf_), target, [](const CDF& a, const CDF& b) { return a.cdf < b.cdf; }); return *it; } void LogCDF() { ABSL_INTERNAL_LOG(INFO, absl::StrCat("CDF (mean = ", mean_, ")")); for (const auto c : cdf_) { ABSL_INTERNAL_LOG(INFO, absl::StrCat(c.index, ": pmf=", c.pmf, " cdf=", c.cdf)); } } private: const double mean_; std::vector cdf_; }; // The goal is to compute an InverseCDF function, or percent point function for // the poisson distribution, and use that to partition our output into equal // range buckets. However there is no closed form solution for the inverse cdf // for poisson distributions (the closest is the incomplete gamma function). // Instead, `InitCDF` iteratively computes the PMF and the CDF. This enables // searching for the bucket points. void PoissonModel::InitCDF() { if (!cdf_.empty()) { // State already initialized. return; } ABSL_ASSERT(mean_ < 201.0); const size_t max_i = 50 * stddev() + mean(); const double e_neg_mean = std::exp(-mean()); ABSL_ASSERT(e_neg_mean > 0); double d = 1; double last_result = e_neg_mean; double cumulative = e_neg_mean; if (e_neg_mean > 1e-10) { cdf_.push_back({0, e_neg_mean, cumulative}); } for (size_t i = 1; i < max_i; i++) { d *= (mean() / i); double result = e_neg_mean * d; cumulative += result; if (result < 1e-10 && result < last_result && cumulative > 0.999999) { break; } if (result > 1e-7) { cdf_.push_back({i, result, cumulative}); } last_result = result; } ABSL_ASSERT(!cdf_.empty()); } // PoissonDistributionZTest implements a z-test for the poisson distribution. struct ZParam { double mean; double p_fail; // Z-Test probability of failure. int trials; // Z-Test trials. size_t samples; // Z-Test samples. }; class PoissonDistributionZTest : public testing::TestWithParam, public PoissonModel { public: PoissonDistributionZTest() : PoissonModel(GetParam().mean) {} // ZTestImpl provides a basic z-squared test of the mean vs. expected // mean for data generated by the poisson distribution. template bool SingleZTest(const double p, const size_t samples); absl::InsecureBitGen rng_; }; template bool PoissonDistributionZTest::SingleZTest(const double p, const size_t samples) { D dis(mean()); absl::flat_hash_map buckets; std::vector data; data.reserve(samples); for (int j = 0; j < samples; j++) { const auto x = dis(rng_); buckets[x]++; data.push_back(x); } // The null-hypothesis is that the distribution is a poisson distribution with // the provided mean (not estimated from the data). const auto m = absl::random_internal::ComputeDistributionMoments(data); const double max_err = absl::random_internal::MaxErrorTolerance(p); const double z = absl::random_internal::ZScore(mean(), m); const bool pass = absl::random_internal::Near("z", z, 0.0, max_err); if (!pass) { ABSL_INTERNAL_LOG( INFO, absl::StrFormat("p=%f max_err=%f\n" " mean=%f vs. %f\n" " stddev=%f vs. %f\n" " skewness=%f vs. %f\n" " kurtosis=%f vs. %f\n" " z=%f", p, max_err, m.mean, mean(), std::sqrt(m.variance), stddev(), m.skewness, skew(), m.kurtosis, kurtosis(), z)); } return pass; } TEST_P(PoissonDistributionZTest, AbslPoissonDistribution) { const auto& param = GetParam(); const int expected_failures = std::max(1, static_cast(std::ceil(param.trials * param.p_fail))); const double p = absl::random_internal::RequiredSuccessProbability( param.p_fail, param.trials); int failures = 0; for (int i = 0; i < param.trials; i++) { failures += SingleZTest>(p, param.samples) ? 0 : 1; } EXPECT_LE(failures, expected_failures); } std::vector GetZParams() { // These values have been adjusted from the "exact" computed values to reduce // failure rates. // // It turns out that the actual values are not as close to the expected values // as would be ideal. return std::vector({ // Knuth method. ZParam{0.5, 0.01, 100, 1000}, ZParam{1.0, 0.01, 100, 1000}, ZParam{10.0, 0.01, 100, 5000}, // Split-knuth method. ZParam{20.0, 0.01, 100, 10000}, ZParam{50.0, 0.01, 100, 10000}, // Ratio of gaussians method. ZParam{51.0, 0.01, 100, 10000}, ZParam{200.0, 0.05, 10, 100000}, ZParam{100000.0, 0.05, 10, 1000000}, }); } std::string ZParamName(const ::testing::TestParamInfo& info) { const auto& p = info.param; std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean)); return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); } INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionZTest, ::testing::ValuesIn(GetZParams()), ZParamName); // The PoissonDistributionChiSquaredTest class provides a basic test framework // for variates generated by a conforming poisson_distribution. class PoissonDistributionChiSquaredTest : public testing::TestWithParam, public PoissonModel { public: PoissonDistributionChiSquaredTest() : PoissonModel(GetParam()) {} // The ChiSquaredTestImpl provides a chi-squared goodness of fit test for data // generated by the poisson distribution. template double ChiSquaredTestImpl(); private: void InitChiSquaredTest(const double buckets); absl::InsecureBitGen rng_; std::vector cutoffs_; std::vector expected_; }; void PoissonDistributionChiSquaredTest::InitChiSquaredTest( const double buckets) { if (!cutoffs_.empty() && !expected_.empty()) { return; } InitCDF(); // The code below finds cuttoffs that yield approximately equally-sized // buckets to the extent that it is possible. However for poisson // distributions this is particularly challenging for small mean parameters. // Track the expected proportion of items in each bucket. double last_cdf = 0; const double inc = 1.0 / buckets; for (double p = inc; p <= 1.0; p += inc) { auto result = InverseCDF(p); if (!cutoffs_.empty() && cutoffs_.back() == result.index) { continue; } double d = result.cdf - last_cdf; cutoffs_.push_back(result.index); expected_.push_back(d); last_cdf = result.cdf; } cutoffs_.push_back(std::numeric_limits::max()); expected_.push_back(std::max(0.0, 1.0 - last_cdf)); } template double PoissonDistributionChiSquaredTest::ChiSquaredTestImpl() { const int kSamples = 2000; const int kBuckets = 50; // The poisson CDF fails for large mean values, since e^-mean exceeds the // machine precision. For these cases, using a normal approximation would be // appropriate. ABSL_ASSERT(mean() <= 200); InitChiSquaredTest(kBuckets); D dis(mean()); std::vector counts(cutoffs_.size(), 0); for (int j = 0; j < kSamples; j++) { const size_t x = dis(rng_); auto it = std::lower_bound(std::begin(cutoffs_), std::end(cutoffs_), x); counts[std::distance(cutoffs_.begin(), it)]++; } // Normalize the counts. std::vector e(expected_.size(), 0); for (int i = 0; i < e.size(); i++) { e[i] = kSamples * expected_[i]; } // The null-hypothesis is that the distribution is a poisson distribution with // the provided mean (not estimated from the data). const int dof = static_cast(counts.size()) - 1; // The threshold for logging is 1-in-50. const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98); const double chi_square = absl::random_internal::ChiSquare( std::begin(counts), std::end(counts), std::begin(e), std::end(e)); const double p = absl::random_internal::ChiSquarePValue(chi_square, dof); // Log if the chi_squared value is above the threshold. if (chi_square > threshold) { LogCDF(); ABSL_INTERNAL_LOG(INFO, absl::StrCat("VALUES buckets=", counts.size(), " samples=", kSamples)); for (size_t i = 0; i < counts.size(); i++) { ABSL_INTERNAL_LOG( INFO, absl::StrCat(cutoffs_[i], ": ", counts[i], " vs. E=", e[i])); } ABSL_INTERNAL_LOG( INFO, absl::StrCat(kChiSquared, "(data, dof=", dof, ") = ", chi_square, " (", p, ")\n", " vs.\n", kChiSquared, " @ 0.98 = ", threshold)); } return p; } TEST_P(PoissonDistributionChiSquaredTest, AbslPoissonDistribution) { const int kTrials = 20; // Large values are not yet supported -- this requires estimating the cdf // using the normal distribution instead of the poisson in this case. ASSERT_LE(mean(), 200.0); if (mean() > 200.0) { return; } int failures = 0; for (int i = 0; i < kTrials; i++) { double p_value = ChiSquaredTestImpl>(); if (p_value < 0.005) { failures++; } } // There is a 0.10% chance of producing at least one failure, so raise the // failure threshold high enough to allow for a flake rate < 10,000. EXPECT_LE(failures, 4); } INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionChiSquaredTest, ::testing::Values(0.5, 1.0, 2.0, 10.0, 50.0, 51.0, 200.0)); // NOTE: absl::poisson_distribution is not guaranteed to be stable. TEST(PoissonDistributionTest, StabilityTest) { using testing::ElementsAre; // absl::poisson_distribution stability relies on stability of // std::exp, std::log, std::sqrt, std::ceil, std::floor, and // absl::FastUniformBits, absl::StirlingLogFactorial, absl::RandU64ToDouble. absl::random_internal::sequence_urbg urbg({ 0x035b0dc7e0a18acfull, 0x06cebe0d2653682eull, 0x0061e9b23861596bull, 0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull, 0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull, 0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull, 0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull, 0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full, 0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull, 0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull, 0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull, 0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull, 0xf3fd722dc65ad09eull, 0xfa14fd21ea2a5705ull, 0xffe6ea4d6edb0c73ull, 0xD07E9EFE2BF11FB4ull, 0x95DBDA4DAE909198ull, 0xEAAD8E716B93D5A0ull, 0xD08ED1D0AFC725E0ull, 0x8E3C5B2F8E7594B7ull, 0x8FF6E2FBF2122B64ull, 0x8888B812900DF01Cull, 0x4FAD5EA0688FC31Cull, 0xD1CFF191B3A8C1ADull, 0x2F2F2218BE0E1777ull, 0xEA752DFE8B021FA1ull, 0xE5A0CC0FB56F74E8ull, 0x18ACF3D6CE89E299ull, 0xB4A84FE0FD13E0B7ull, 0x7CC43B81D2ADA8D9ull, 0x165FA26680957705ull, 0x93CC7314211A1477ull, 0xE6AD206577B5FA86ull, 0xC75442F5FB9D35CFull, 0xEBCDAF0C7B3E89A0ull, 0xD6411BD3AE1E7E49ull, 0x00250E2D2071B35Eull, 0x226800BB57B8E0AFull, 0x2464369BF009B91Eull, 0x5563911D59DFA6AAull, 0x78C14389D95A537Full, 0x207D5BA202E5B9C5ull, 0x832603766295CFA9ull, 0x11C819684E734A41ull, 0xB3472DCA7B14A94Aull, }); std::vector output(10); // Method 1. { absl::poisson_distribution dist(5); std::generate(std::begin(output), std::end(output), [&] { return dist(urbg); }); } EXPECT_THAT(output, // mean = 4.2 ElementsAre(1, 0, 0, 4, 2, 10, 3, 3, 7, 12)); // Method 2. { urbg.reset(); absl::poisson_distribution dist(25); std::generate(std::begin(output), std::end(output), [&] { return dist(urbg); }); } EXPECT_THAT(output, // mean = 19.8 ElementsAre(9, 35, 18, 10, 35, 18, 10, 35, 18, 10)); // Method 3. { urbg.reset(); absl::poisson_distribution dist(121); std::generate(std::begin(output), std::end(output), [&] { return dist(urbg); }); } EXPECT_THAT(output, // mean = 124.1 ElementsAre(161, 122, 129, 124, 112, 112, 117, 120, 130, 114)); } TEST(PoissonDistributionTest, AlgorithmExpectedValue_1) { // This tests small values of the Knuth method. // The underlying uniform distribution will generate exactly 0.5. absl::random_internal::sequence_urbg urbg({0x8000000000000001ull}); absl::poisson_distribution dist(5); EXPECT_EQ(7, dist(urbg)); } TEST(PoissonDistributionTest, AlgorithmExpectedValue_2) { // This tests larger values of the Knuth method. // The underlying uniform distribution will generate exactly 0.5. absl::random_internal::sequence_urbg urbg({0x8000000000000001ull}); absl::poisson_distribution dist(25); EXPECT_EQ(36, dist(urbg)); } TEST(PoissonDistributionTest, AlgorithmExpectedValue_3) { // This variant uses the ratio of uniforms method. absl::random_internal::sequence_urbg urbg( {0x7fffffffffffffffull, 0x8000000000000000ull}); absl::poisson_distribution dist(121); EXPECT_EQ(121, dist(urbg)); } } // namespace