// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/log_uniform_int_distribution.h" #include #include #include #include #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/raw_logging.h" #include "absl/random/internal/chi_square.h" #include "absl/random/internal/distribution_test_util.h" #include "absl/random/internal/sequence_urbg.h" #include "absl/random/random.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_replace.h" #include "absl/strings/strip.h" namespace { template class LogUniformIntDistributionTypeTest : public ::testing::Test {}; using IntTypes = ::testing::Types; TYPED_TEST_CASE(LogUniformIntDistributionTypeTest, IntTypes); TYPED_TEST(LogUniformIntDistributionTypeTest, SerializeTest) { using param_type = typename absl::log_uniform_int_distribution::param_type; using Limits = std::numeric_limits; constexpr int kCount = 1000; absl::InsecureBitGen gen; for (const auto& param : { param_type(0, 1), // param_type(0, 2), // param_type(0, 2, 10), // param_type(9, 32, 4), // param_type(1, 101, 10), // param_type(1, Limits::max() / 2), // param_type(0, Limits::max() - 1), // param_type(0, Limits::max(), 2), // param_type(0, Limits::max(), 10), // param_type(Limits::min(), 0), // param_type(Limits::lowest(), Limits::max()), // param_type(Limits::min(), Limits::max()), // }) { // Validate parameters. const auto min = param.min(); const auto max = param.max(); const auto base = param.base(); absl::log_uniform_int_distribution before(min, max, base); EXPECT_EQ(before.min(), param.min()); EXPECT_EQ(before.max(), param.max()); EXPECT_EQ(before.base(), param.base()); { absl::log_uniform_int_distribution via_param(param); EXPECT_EQ(via_param, before); } // Validate stream serialization. std::stringstream ss; ss << before; absl::log_uniform_int_distribution after(3, 6, 17); EXPECT_NE(before.max(), after.max()); EXPECT_NE(before.base(), after.base()); EXPECT_NE(before.param(), after.param()); EXPECT_NE(before, after); ss >> after; EXPECT_EQ(before.min(), after.min()); EXPECT_EQ(before.max(), after.max()); EXPECT_EQ(before.base(), after.base()); EXPECT_EQ(before.param(), after.param()); EXPECT_EQ(before, after); // Smoke test. auto sample_min = after.max(); auto sample_max = after.min(); for (int i = 0; i < kCount; i++) { auto sample = after(gen); EXPECT_GE(sample, after.min()); EXPECT_LE(sample, after.max()); if (sample > sample_max) sample_max = sample; if (sample < sample_min) sample_min = sample; } ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range: ", +sample_min, ", ", +sample_max)); } } using log_uniform_i32 = absl::log_uniform_int_distribution; class LogUniformIntChiSquaredTest : public testing::TestWithParam { public: // The ChiSquaredTestImpl provides a chi-squared goodness of fit test for // data generated by the log-uniform-int distribution. double ChiSquaredTestImpl(); absl::InsecureBitGen rng_; }; double LogUniformIntChiSquaredTest::ChiSquaredTestImpl() { using absl::random_internal::kChiSquared; const auto& param = GetParam(); // Check the distribution of L=log(log_uniform_int_distribution, base), // expecting that L is roughly uniformly distributed, that is: // // P[L=0] ~= P[L=1] ~= ... ~= P[L=log(max)] // // For a total of X entries, each bucket should contain some number of samples // in the interval [X/k - a, X/k + a]. // // Where `a` is approximately sqrt(X/k). This is validated by bucketing // according to the log function and using a chi-squared test for uniformity. const bool is_2 = (param.base() == 2); const double base_log = 1.0 / std::log(param.base()); const auto bucket_index = [base_log, is_2, ¶m](int32_t x) { uint64_t y = static_cast(x) - param.min(); return (y == 0) ? 0 : is_2 ? static_cast(1 + std::log2(y)) : static_cast(1 + std::log(y) * base_log); }; const int max_bucket = bucket_index(param.max()); // inclusive const size_t trials = 15 + (max_bucket + 1) * 10; log_uniform_i32 dist(param); std::vector buckets(max_bucket + 1); for (size_t i = 0; i < trials; ++i) { const auto sample = dist(rng_); // Check the bounds. ABSL_ASSERT(sample <= dist.max()); ABSL_ASSERT(sample >= dist.min()); // Convert the output of the generator to one of num_bucket buckets. int bucket = bucket_index(sample); ABSL_ASSERT(bucket <= max_bucket); ++buckets[bucket]; } // The null-hypothesis is that the distribution is uniform with respect to // log-uniform-int bucketization. const int dof = buckets.size() - 1; const double expected = trials / static_cast(buckets.size()); const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98); double chi_square = absl::random_internal::ChiSquareWithExpected( std::begin(buckets), std::end(buckets), expected); const double p = absl::random_internal::ChiSquarePValue(chi_square, dof); if (chi_square > threshold) { ABSL_INTERNAL_LOG(INFO, "values"); for (size_t i = 0; i < buckets.size(); i++) { ABSL_INTERNAL_LOG(INFO, absl::StrCat(i, ": ", buckets[i])); } ABSL_INTERNAL_LOG(INFO, absl::StrFormat("trials=%d\n" "%s(data, %d) = %f (%f)\n" "%s @ 0.98 = %f", trials, kChiSquared, dof, chi_square, p, kChiSquared, threshold)); } return p; } TEST_P(LogUniformIntChiSquaredTest, MultiTest) { const int kTrials = 5; int failures = 0; for (int i = 0; i < kTrials; i++) { double p_value = ChiSquaredTestImpl(); if (p_value < 0.005) { failures++; } } // There is a 0.10% chance of producing at least one failure, so raise the // failure threshold high enough to allow for a flake rate < 10,000. EXPECT_LE(failures, 4); } // Generate the parameters for the test. std::vector GenParams() { using Param = log_uniform_i32::param_type; using Limits = std::numeric_limits; return std::vector{ Param{0, 1, 2}, Param{1, 1, 2}, Param{0, 2, 2}, Param{0, 3, 2}, Param{0, 4, 2}, Param{0, 9, 10}, Param{0, 10, 10}, Param{0, 11, 10}, Param{1, 10, 10}, Param{0, (1 << 8) - 1, 2}, Param{0, (1 << 8), 2}, Param{0, (1 << 30) - 1, 2}, Param{-1000, 1000, 10}, Param{0, Limits::max(), 2}, Param{0, Limits::max(), 3}, Param{0, Limits::max(), 10}, Param{Limits::min(), 0}, Param{Limits::min(), Limits::max(), 2}, }; } std::string ParamName( const ::testing::TestParamInfo& info) { const auto& p = info.param; std::string name = absl::StrCat("min_", p.min(), "__max_", p.max(), "__base_", p.base()); return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); } INSTANTIATE_TEST_SUITE_P(, LogUniformIntChiSquaredTest, ::testing::ValuesIn(GenParams()), ParamName); // NOTE: absl::log_uniform_int_distribution is not guaranteed to be stable. TEST(LogUniformIntDistributionTest, StabilityTest) { using testing::ElementsAre; // absl::uniform_int_distribution stability relies on // absl::random_internal::LeadingSetBit, std::log, std::pow. absl::random_internal::sequence_urbg urbg( {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); std::vector output(6); { absl::log_uniform_int_distribution dist(0, 256); std::generate(std::begin(output), std::end(output), [&] { return dist(urbg); }); EXPECT_THAT(output, ElementsAre(256, 66, 4, 6, 57, 103)); } urbg.reset(); { absl::log_uniform_int_distribution dist(0, 256, 10); std::generate(std::begin(output), std::end(output), [&] { return dist(urbg); }); EXPECT_THAT(output, ElementsAre(8, 4, 0, 0, 0, 69)); } } } // namespace