// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_RANDOM_INTERNAL_TRAITS_H_ #define ABSL_RANDOM_INTERNAL_TRAITS_H_ #include #include #include #include "absl/base/config.h" #include "absl/numeric/bits.h" #include "absl/numeric/int128.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { // random_internal::is_widening_convertible // // Returns whether a type A is widening-convertible to a type B. // // A is widening-convertible to B means: // A a = ; // B b = a; // A c = b; // EXPECT_EQ(a, c); template class is_widening_convertible { // As long as there are enough bits in the exact part of a number: // - unsigned can fit in float, signed, unsigned // - signed can fit in float, signed // - float can fit in float // So we define rank to be: // - rank(float) -> 2 // - rank(signed) -> 1 // - rank(unsigned) -> 0 template static constexpr int rank() { return !std::numeric_limits::is_integer + std::numeric_limits::is_signed; } public: // If an arithmetic-type B can represent at least as many digits as a type A, // and B belongs to a rank no lower than A, then A can be safely represented // by B through a widening-conversion. static constexpr bool value = std::numeric_limits::digits <= std::numeric_limits::digits && rank() <= rank(); }; template struct IsIntegral : std::is_integral {}; template <> struct IsIntegral : std::true_type {}; template <> struct IsIntegral : std::true_type {}; template struct MakeUnsigned : std::make_unsigned {}; template <> struct MakeUnsigned { using type = absl::uint128; }; template <> struct MakeUnsigned { using type = absl::uint128; }; template struct IsUnsigned : std::is_unsigned {}; template <> struct IsUnsigned : std::false_type {}; template <> struct IsUnsigned : std::true_type {}; // unsigned_bits::type returns the unsigned int type with the indicated // number of bits. template struct unsigned_bits; template <> struct unsigned_bits<8> { using type = uint8_t; }; template <> struct unsigned_bits<16> { using type = uint16_t; }; template <> struct unsigned_bits<32> { using type = uint32_t; }; template <> struct unsigned_bits<64> { using type = uint64_t; }; template <> struct unsigned_bits<128> { using type = absl::uint128; }; // 256-bit wrapper for wide multiplications. struct U256 { uint128 hi; uint128 lo; }; template <> struct unsigned_bits<256> { using type = U256; }; template struct make_unsigned_bits { using type = typename unsigned_bits< std::numeric_limits::type>::digits>::type; }; template int BitWidth(T v) { // Workaround for bit_width not supporting int128. // Don't hardcode `64` to make sure this code does not trigger compiler // warnings in smaller types. constexpr int half_bits = sizeof(T) * 8 / 2; if (sizeof(T) == 16 && (v >> half_bits) != 0) { return bit_width(static_cast(v >> half_bits)) + half_bits; } else { return bit_width(static_cast(v)); } } } // namespace random_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_RANDOM_INTERNAL_TRAITS_H_