// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_ #define ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_ #include #include #include #include namespace absl { namespace random_internal { // Computes the length of the range of values producible by the URBG, or returns // zero if that would encompass the entire range of representable values in // URBG::result_type. template constexpr typename URBG::result_type constexpr_range() { using result_type = typename URBG::result_type; return ((URBG::max)() == (std::numeric_limits::max)() && (URBG::min)() == std::numeric_limits::lowest()) ? result_type{0} : (URBG::max)() - (URBG::min)() + result_type{1}; } // FastUniformBits implements a fast path to acquire uniform independent bits // from a type which conforms to the [rand.req.urbg] concept. // Parameterized by: // `UIntType`: the result (output) type // `Width`: binary output width // // The std::independent_bits_engine [rand.adapt.ibits] adaptor can be // instantiated from an existing generator through a copy or a move. It does // not, however, facilitate the production of pseudorandom bits from an un-owned // generator that will outlive the std::independent_bits_engine instance. template ::digits> class FastUniformBits { static_assert(std::is_unsigned::value, "Class-template FastUniformBits<> must be parameterized using " "an unsigned type."); // `kWidth` is the width, in binary digits, of the output. By default it is // the number of binary digits in the `result_type`. static constexpr size_t kWidth = Width; static_assert(kWidth > 0, "Class-template FastUniformBits<> Width argument must be > 0"); static_assert(kWidth <= std::numeric_limits::digits, "Class-template FastUniformBits<> Width argument must be <= " "width of UIntType."); static constexpr bool kIsMaxWidth = (kWidth >= std::numeric_limits::digits); // Computes a mask of `n` bits for the `UIntType`. static constexpr UIntType constexpr_mask(size_t n) { return (UIntType(1) << n) - 1; } public: using result_type = UIntType; static constexpr result_type(min)() { return 0; } static constexpr result_type(max)() { return kIsMaxWidth ? (std::numeric_limits::max)() : constexpr_mask(kWidth); } template result_type operator()(URBG& g); // NOLINT(runtime/references) private: // Variate() generates a single random variate, always returning a value // in the closed interval [0 ... FastUniformBitsURBGConstants::kRangeMask] // (kRangeMask+1 is a power of 2). template typename URBG::result_type Variate(URBG& g); // NOLINT(runtime/references) // generate() generates a random value, dispatched on whether // the underlying URNG must loop over multiple calls or not. template result_type Generate(URBG& g, // NOLINT(runtime/references) std::true_type /* avoid_looping */); template result_type Generate(URBG& g, // NOLINT(runtime/references) std::false_type /* avoid_looping */); }; // FastUniformBitsURBGConstants computes the URBG-derived constants used // by FastUniformBits::Generate and FastUniformBits::Variate. // Parameterized by the FastUniformBits parameter: // `URBG`: The underlying UniformRandomNumberGenerator. // // The values here indicate the URBG range as well as providing an indicator // whether the URBG output is a power of 2, and kRangeMask, which allows masking // the generated output to kRangeBits. template class FastUniformBitsURBGConstants { // Computes the floor of the log. (i.e., std::floor(std::log2(N)); static constexpr size_t constexpr_log2(size_t n) { return (n <= 1) ? 0 : 1 + constexpr_log2(n / 2); } // Computes a mask of n bits for the URBG::result_type. static constexpr typename URBG::result_type constexpr_mask(size_t n) { return (typename URBG::result_type(1) << n) - 1; } public: using result_type = typename URBG::result_type; // The range of the URNG, max - min + 1, or zero if that result would cause // overflow. static constexpr result_type kRange = constexpr_range(); static constexpr bool kPowerOfTwo = (kRange == 0) || ((kRange & (kRange - 1)) == 0); // kRangeBits describes the number number of bits suitable to mask off of URNG // variate, which is: // kRangeBits = floor(log2(kRange)) static constexpr size_t kRangeBits = kRange == 0 ? std::numeric_limits::digits : constexpr_log2(kRange); // kRangeMask is the mask used when sampling variates from the URNG when the // width of the URNG range is not a power of 2. // Y = (2 ^ kRange) - 1 static constexpr result_type kRangeMask = kRange == 0 ? (std::numeric_limits::max)() : constexpr_mask(kRangeBits); static_assert((URBG::max)() != (URBG::min)(), "Class-template FastUniformBitsURBGConstants<> " "URBG::max and URBG::min may not be equal."); static_assert(std::is_unsigned::value, "Class-template FastUniformBitsURBGConstants<> " "URBG::result_type must be unsigned."); static_assert(kRangeMask > 0, "Class-template FastUniformBitsURBGConstants<> " "URBG does not generate sufficient random bits."); static_assert(kRange == 0 || kRangeBits < std::numeric_limits::digits, "Class-template FastUniformBitsURBGConstants<> " "URBG range computation error."); }; // FastUniformBitsLoopingConstants computes the looping constants used // by FastUniformBits::Generate. These constants indicate how multiple // URBG::result_type values are combined into an output_value. // Parameterized by the FastUniformBits parameters: // `UIntType`: output type. // `Width`: binary output width, // `URNG`: The underlying UniformRandomNumberGenerator. // // The looping constants describe the sets of loop counters and mask values // which control how individual variates are combined the final output. The // algorithm ensures that the number of bits used by any individual call differs // by at-most one bit from any other call. This is simplified into constants // which describe two loops, with the second loop parameters providing one extra // bit per variate. // // See [rand.adapt.ibits] for more details on the use of these constants. template class FastUniformBitsLoopingConstants { private: static constexpr size_t kWidth = Width; using urbg_result_type = typename URBG::result_type; using uint_result_type = UIntType; public: using result_type = typename std::conditional<(sizeof(urbg_result_type) <= sizeof(uint_result_type)), uint_result_type, urbg_result_type>::type; private: // Estimate N as ceil(width / urng width), and W0 as (width / N). static constexpr size_t kRangeBits = FastUniformBitsURBGConstants::kRangeBits; // The range of the URNG, max - min + 1, or zero if that result would cause // overflow. static constexpr result_type kRange = constexpr_range(); static constexpr size_t kEstimateN = kWidth / kRangeBits + (kWidth % kRangeBits != 0); static constexpr size_t kEstimateW0 = kWidth / kEstimateN; static constexpr result_type kEstimateY0 = (kRange >> kEstimateW0) << kEstimateW0; public: // Parameters for the two loops: // kN0, kN1 are the number of underlying calls required for each loop. // KW0, kW1 are shift widths for each loop. // static constexpr size_t kN1 = (kRange - kEstimateY0) > (kEstimateY0 / kEstimateN) ? kEstimateN + 1 : kEstimateN; static constexpr size_t kN0 = kN1 - (kWidth % kN1); static constexpr size_t kW0 = kWidth / kN1; static constexpr size_t kW1 = kW0 + 1; static constexpr result_type kM0 = (result_type(1) << kW0) - 1; static constexpr result_type kM1 = (result_type(1) << kW1) - 1; static_assert( kW0 <= kRangeBits, "Class-template FastUniformBitsLoopingConstants::kW0 too large."); static_assert( kW0 > 0, "Class-template FastUniformBitsLoopingConstants::kW0 too small."); }; template template typename FastUniformBits::result_type FastUniformBits::operator()( URBG& g) { // NOLINT(runtime/references) using constants = FastUniformBitsURBGConstants; return Generate( g, std::integral_constant= (max)()>{}); } template template typename URBG::result_type FastUniformBits::Variate( URBG& g) { // NOLINT(runtime/references) using constants = FastUniformBitsURBGConstants; if (constants::kPowerOfTwo) { return g() - (URBG::min)(); } // Use rejection sampling to ensure uniformity across the range. typename URBG::result_type u; do { u = g() - (URBG::min)(); } while (u > constants::kRangeMask); return u; } template template typename FastUniformBits::result_type FastUniformBits::Generate( URBG& g, // NOLINT(runtime/references) std::true_type /* avoid_looping */) { // The width of the result_type is less than than the width of the random bits // provided by URNG. Thus, generate a single value and then simply mask off // the required bits. return Variate(g) & (max)(); } template template typename FastUniformBits::result_type FastUniformBits::Generate( URBG& g, // NOLINT(runtime/references) std::false_type /* avoid_looping */) { // The width of the result_type is wider than the number of random bits // provided by URNG. Thus we merge several variates of URNG into the result // using a shift and mask. The constants type generates the parameters used // ensure that the bits are distributed across all the invocations of the // underlying URNG. using constants = FastUniformBitsLoopingConstants; result_type s = 0; for (size_t n = 0; n < constants::kN0; ++n) { auto u = Variate(g); s = (s << constants::kW0) + (u & constants::kM0); } for (size_t n = constants::kN0; n < constants::kN1; ++n) { auto u = Variate(g); s = (s << constants::kW1) + (u & constants::kM1); } return s; } } // namespace random_internal } // namespace absl #endif // ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_