// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/internal/explicit_seed_seq.h" #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/random/seed_sequences.h" namespace { template bool ConformsToInterface() { // Check that the SeedSequence can be default-constructed. { Sseq default_constructed_seq; } // Check that the SeedSequence can be constructed with two iterators. { uint32_t init_array[] = {1, 3, 5, 7, 9}; Sseq iterator_constructed_seq(init_array, &init_array[5]); } // Check that the SeedSequence can be std::initializer_list-constructed. { Sseq list_constructed_seq = {1, 3, 5, 7, 9, 11, 13}; } // Check that param() and size() return state provided to constructor. { uint32_t init_array[] = {1, 2, 3, 4, 5}; Sseq seq(init_array, &init_array[ABSL_ARRAYSIZE(init_array)]); EXPECT_EQ(seq.size(), ABSL_ARRAYSIZE(init_array)); uint32_t state_array[ABSL_ARRAYSIZE(init_array)]; seq.param(state_array); for (int i = 0; i < ABSL_ARRAYSIZE(state_array); i++) { EXPECT_EQ(state_array[i], i + 1); } } // Check for presence of generate() method. { Sseq seq; uint32_t seeds[5]; seq.generate(seeds, &seeds[ABSL_ARRAYSIZE(seeds)]); } return true; } } // namespace TEST(SeedSequences, CheckInterfaces) { // Control case EXPECT_TRUE(ConformsToInterface()); // Abseil classes EXPECT_TRUE(ConformsToInterface()); } TEST(ExplicitSeedSeq, DefaultConstructorGeneratesZeros) { const size_t kNumBlocks = 128; uint32_t outputs[kNumBlocks]; absl::random_internal::ExplicitSeedSeq seq; seq.generate(outputs, &outputs[kNumBlocks]); for (uint32_t& seed : outputs) { EXPECT_EQ(seed, 0); } } TEST(ExplicitSeeqSeq, SeedMaterialIsForwardedIdentically) { const size_t kNumBlocks = 128; uint32_t seed_material[kNumBlocks]; std::random_device urandom{"/dev/urandom"}; for (uint32_t& seed : seed_material) { seed = urandom(); } absl::random_internal::ExplicitSeedSeq seq(seed_material, &seed_material[kNumBlocks]); // Check that output is same as seed-material provided to constructor. { const size_t kNumGenerated = kNumBlocks / 2; uint32_t outputs[kNumGenerated]; seq.generate(outputs, &outputs[kNumGenerated]); for (size_t i = 0; i < kNumGenerated; i++) { EXPECT_EQ(outputs[i], seed_material[i]); } } // Check that SeedSequence is stateless between invocations: Despite the last // invocation of generate() only consuming half of the input-entropy, the same // entropy will be recycled for the next invocation. { const size_t kNumGenerated = kNumBlocks; uint32_t outputs[kNumGenerated]; seq.generate(outputs, &outputs[kNumGenerated]); for (size_t i = 0; i < kNumGenerated; i++) { EXPECT_EQ(outputs[i], seed_material[i]); } } // Check that when more seed-material is asked for than is provided, nonzero // values are still written. { const size_t kNumGenerated = kNumBlocks * 2; uint32_t outputs[kNumGenerated]; seq.generate(outputs, &outputs[kNumGenerated]); for (size_t i = 0; i < kNumGenerated; i++) { EXPECT_EQ(outputs[i], seed_material[i % kNumBlocks]); } } } TEST(ExplicitSeedSeq, CopyAndMoveConstructors) { using testing::Each; using testing::Eq; using testing::Not; using testing::Pointwise; uint32_t entropy[4]; std::random_device urandom("/dev/urandom"); for (uint32_t& entry : entropy) { entry = urandom(); } absl::random_internal::ExplicitSeedSeq seq_from_entropy(std::begin(entropy), std::end(entropy)); // Copy constructor. { absl::random_internal::ExplicitSeedSeq seq_copy(seq_from_entropy); EXPECT_EQ(seq_copy.size(), seq_from_entropy.size()); std::vector seeds_1; seeds_1.resize(1000, 0); std::vector seeds_2; seeds_2.resize(1000, 1); seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); seq_copy.generate(seeds_2.begin(), seeds_2.end()); EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2)); } // Assignment operator. { for (uint32_t& entry : entropy) { entry = urandom(); } absl::random_internal::ExplicitSeedSeq another_seq(std::begin(entropy), std::end(entropy)); std::vector seeds_1; seeds_1.resize(1000, 0); std::vector seeds_2; seeds_2.resize(1000, 0); seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); another_seq.generate(seeds_2.begin(), seeds_2.end()); // Assert precondition: Sequences generated by seed-sequences are not equal. EXPECT_THAT(seeds_1, Not(Pointwise(Eq(), seeds_2))); // Apply the assignment-operator. another_seq = seq_from_entropy; // Re-generate seeds. seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); another_seq.generate(seeds_2.begin(), seeds_2.end()); // Seeds generated by seed-sequences should now be equal. EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2)); } // Move constructor. { // Get seeds from seed-sequence constructed from entropy. std::vector seeds_1; seeds_1.resize(1000, 0); seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); // Apply move-constructor move the sequence to another instance. absl::random_internal::ExplicitSeedSeq moved_seq( std::move(seq_from_entropy)); std::vector seeds_2; seeds_2.resize(1000, 1); moved_seq.generate(seeds_2.begin(), seeds_2.end()); // Verify that seeds produced by moved-instance are the same as original. EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2)); // Verify that the moved-from instance now behaves like a // default-constructed instance. EXPECT_EQ(seq_from_entropy.size(), 0); seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); EXPECT_THAT(seeds_1, Each(Eq(0))); } }