// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_ #define ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_ // This file contains some implementation details which are used by one or more // of the absl random number distributions. #include #include #include #include #include #include #if (defined(_WIN32) || defined(_WIN64)) && defined(_M_IA64) #include // NOLINT(build/include_order) #pragma intrinsic(_umul128) #define ABSL_INTERNAL_USE_UMUL128 1 #endif #include "absl/base/config.h" #include "absl/base/internal/bits.h" #include "absl/numeric/int128.h" #include "absl/random/internal/fastmath.h" #include "absl/random/internal/traits.h" namespace absl { inline namespace lts_2019_08_08 { namespace random_internal { // Creates a double from `bits`, with the template fields controlling the // output. // // RandU64To is both more efficient and generates more unique values in the // result interval than known implementations of std::generate_canonical(). // // The `Signed` parameter controls whether positive, negative, or both are // returned (thus affecting the output interval). // When Signed == SignedValueT, range is U(-1, 1) // When Signed == NegativeValueT, range is U(-1, 0) // When Signed == PositiveValueT, range is U(0, 1) // // When the `IncludeZero` parameter is true, the function may return 0 for some // inputs, otherwise it never returns 0. // // The `ExponentBias` parameter determines the scale of the output range by // adjusting the exponent. // // When a value in U(0,1) is required, use: // RandU64ToDouble(); // // When a value in U(-1,1) is required, use: // RandU64ToDouble() => U(-1, 1) // This generates more distinct values than the mathematically equivalent // expression `U(0, 1) * 2.0 - 1.0`, and is preferable. // // Scaling the result by powers of 2 (and avoiding a multiply) is also possible: // RandU64ToDouble(); => U(0, 2) // RandU64ToDouble(); => U(0, 0.5) // // Tristate types controlling the output. struct PositiveValueT {}; struct NegativeValueT {}; struct SignedValueT {}; // RandU64ToDouble is the double-result variant of RandU64To, described above. template inline double RandU64ToDouble(uint64_t bits) { static_assert(std::is_same::value || std::is_same::value || std::is_same::value, ""); // Maybe use the left-most bit for a sign bit. uint64_t sign = std::is_same::value ? 0x8000000000000000ull : 0; // Sign bits. if (std::is_same::value) { sign = bits & 0x8000000000000000ull; bits = bits & 0x7FFFFFFFFFFFFFFFull; } if (IncludeZero) { if (bits == 0u) return 0; } // Number of leading zeros is mapped to the exponent: 2^-clz int clz = base_internal::CountLeadingZeros64(bits); // Shift number left to erase leading zeros. bits <<= IncludeZero ? clz : (clz & 63); // Shift number right to remove bits that overflow double mantissa. The // direction of the shift depends on `clz`. bits >>= (64 - DBL_MANT_DIG); // Compute IEEE 754 double exponent. // In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the // exponent to account for that. const uint64_t exp = (std::is_same::value ? 1023U : 1022U) + static_cast(ExponentBias - clz); constexpr int kExp = DBL_MANT_DIG - 1; // Construct IEEE 754 double from exponent and mantissa. const uint64_t val = sign | (exp << kExp) | (bits & ((1ULL << kExp) - 1U)); double res; static_assert(sizeof(res) == sizeof(val), "double is not 64 bit"); // Memcpy value from "val" to "res" to avoid aliasing problems. Assumes that // endian-ness is same for double and uint64_t. std::memcpy(&res, &val, sizeof(res)); return res; } // RandU64ToFloat is the float-result variant of RandU64To, described above. template inline float RandU64ToFloat(uint64_t bits) { static_assert(std::is_same::value || std::is_same::value || std::is_same::value, ""); // Maybe use the left-most bit for a sign bit. uint64_t sign = std::is_same::value ? 0x80000000ul : 0; // Sign bits. if (std::is_same::value) { uint64_t a = bits & 0x8000000000000000ull; sign = static_cast(a >> 32); bits = bits & 0x7FFFFFFFFFFFFFFFull; } if (IncludeZero) { if (bits == 0u) return 0; } // Number of leading zeros is mapped to the exponent: 2^-clz int clz = base_internal::CountLeadingZeros64(bits); // Shift number left to erase leading zeros. bits <<= IncludeZero ? clz : (clz & 63); // Shift number right to remove bits that overflow double mantissa. The // direction of the shift depends on `clz`. bits >>= (64 - FLT_MANT_DIG); // Construct IEEE 754 float exponent. // In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the // exponent to account for that. const uint32_t exp = (std::is_same::value ? 127U : 126U) + static_cast(ExponentBias - clz); constexpr int kExp = FLT_MANT_DIG - 1; const uint32_t val = sign | (exp << kExp) | (bits & ((1U << kExp) - 1U)); float res; static_assert(sizeof(res) == sizeof(val), "float is not 32 bit"); // Assumes that endian-ness is same for float and uint32_t. std::memcpy(&res, &val, sizeof(res)); return res; } template struct RandU64ToReal { template static inline Result Value(uint64_t bits) { return RandU64ToDouble(bits); } }; template <> struct RandU64ToReal { template static inline float Value(uint64_t bits) { return RandU64ToFloat(bits); } }; inline uint128 MultiplyU64ToU128(uint64_t a, uint64_t b) { #if defined(ABSL_HAVE_INTRINSIC_INT128) return uint128(static_cast<__uint128_t>(a) * b); #elif defined(ABSL_INTERNAL_USE_UMUL128) // uint64_t * uint64_t => uint128 multiply using imul intrinsic on MSVC. uint64_t high = 0; const uint64_t low = _umul128(a, b, &high); return absl::MakeUint128(high, low); #else // uint128(a) * uint128(b) in emulated mode computes a full 128-bit x 128-bit // multiply. However there are many cases where that is not necessary, and it // is only necessary to support a 64-bit x 64-bit = 128-bit multiply. This is // for those cases. const uint64_t a00 = static_cast(a); const uint64_t a32 = a >> 32; const uint64_t b00 = static_cast(b); const uint64_t b32 = b >> 32; const uint64_t c00 = a00 * b00; const uint64_t c32a = a00 * b32; const uint64_t c32b = a32 * b00; const uint64_t c64 = a32 * b32; const uint32_t carry = static_cast(((c00 >> 32) + static_cast(c32a) + static_cast(c32b)) >> 32); return absl::MakeUint128(c64 + (c32a >> 32) + (c32b >> 32) + carry, c00 + (c32a << 32) + (c32b << 32)); #endif } // wide_multiply multiplies two N-bit values to a 2N-bit result. template struct wide_multiply { static constexpr size_t kN = std::numeric_limits::digits; using input_type = UIntType; using result_type = typename random_internal::unsigned_bits::type; static result_type multiply(input_type a, input_type b) { return static_cast(a) * b; } static input_type hi(result_type r) { return r >> kN; } static input_type lo(result_type r) { return r; } static_assert(std::is_unsigned::value, "Class-template wide_multiply<> argument must be unsigned."); }; #ifndef ABSL_HAVE_INTRINSIC_INT128 template <> struct wide_multiply { using input_type = uint64_t; using result_type = uint128; static result_type multiply(uint64_t a, uint64_t b) { return MultiplyU64ToU128(a, b); } static uint64_t hi(result_type r) { return Uint128High64(r); } static uint64_t lo(result_type r) { return Uint128Low64(r); } }; #endif } // namespace random_internal } // inline namespace lts_2019_08_08 } // namespace absl #endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_