// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Tests for pointer utilities. #include "absl/memory/memory.h" #include #include #include #include #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" namespace { using ::testing::ElementsAre; using ::testing::Return; // This class creates observable behavior to verify that a destructor has // been called, via the instance_count variable. class DestructorVerifier { public: DestructorVerifier() { ++instance_count_; } DestructorVerifier(const DestructorVerifier&) = delete; DestructorVerifier& operator=(const DestructorVerifier&) = delete; ~DestructorVerifier() { --instance_count_; } // The number of instances of this class currently active. static int instance_count() { return instance_count_; } private: // The number of instances of this class currently active. static int instance_count_; }; int DestructorVerifier::instance_count_ = 0; TEST(WrapUniqueTest, WrapUnique) { // Test that the unique_ptr is constructed properly by verifying that the // destructor for its payload gets called at the proper time. { auto dv = new DestructorVerifier; EXPECT_EQ(1, DestructorVerifier::instance_count()); std::unique_ptr ptr = absl::WrapUnique(dv); EXPECT_EQ(1, DestructorVerifier::instance_count()); } EXPECT_EQ(0, DestructorVerifier::instance_count()); } TEST(MakeUniqueTest, Basic) { std::unique_ptr p = absl::make_unique(); EXPECT_EQ("", *p); p = absl::make_unique("hi"); EXPECT_EQ("hi", *p); } // InitializationVerifier fills in a pattern when allocated so we can // distinguish between its default and value initialized states (without // accessing truly uninitialized memory). struct InitializationVerifier { static constexpr int kDefaultScalar = 0x43; static constexpr int kDefaultArray = 0x4B; static void* operator new(size_t n) { void* ret = ::operator new(n); memset(ret, kDefaultScalar, n); return ret; } static void* operator new[](size_t n) { void* ret = ::operator new[](n); memset(ret, kDefaultArray, n); return ret; } int a; int b; }; TEST(Initialization, MakeUnique) { auto p = absl::make_unique(); EXPECT_EQ(0, p->a); EXPECT_EQ(0, p->b); } TEST(Initialization, MakeUniqueArray) { auto p = absl::make_unique(2); EXPECT_EQ(0, p[0].a); EXPECT_EQ(0, p[0].b); EXPECT_EQ(0, p[1].a); EXPECT_EQ(0, p[1].b); } struct MoveOnly { MoveOnly() = default; explicit MoveOnly(int i1) : ip1{new int{i1}} {} MoveOnly(int i1, int i2) : ip1{new int{i1}}, ip2{new int{i2}} {} std::unique_ptr ip1; std::unique_ptr ip2; }; struct AcceptMoveOnly { explicit AcceptMoveOnly(MoveOnly m) : m_(std::move(m)) {} MoveOnly m_; }; TEST(MakeUniqueTest, MoveOnlyTypeAndValue) { using ExpectedType = std::unique_ptr; { auto p = absl::make_unique(); static_assert(std::is_same::value, "unexpected return type"); EXPECT_TRUE(!p->ip1); EXPECT_TRUE(!p->ip2); } { auto p = absl::make_unique(1); static_assert(std::is_same::value, "unexpected return type"); EXPECT_TRUE(p->ip1 && *p->ip1 == 1); EXPECT_TRUE(!p->ip2); } { auto p = absl::make_unique(1, 2); static_assert(std::is_same::value, "unexpected return type"); EXPECT_TRUE(p->ip1 && *p->ip1 == 1); EXPECT_TRUE(p->ip2 && *p->ip2 == 2); } } TEST(MakeUniqueTest, AcceptMoveOnly) { auto p = absl::make_unique(MoveOnly()); p = std::unique_ptr(new AcceptMoveOnly(MoveOnly())); } struct ArrayWatch { void* operator new[](size_t n) { allocs().push_back(n); return ::operator new[](n); } void operator delete[](void* p) { return ::operator delete[](p); } static std::vector& allocs() { static auto& v = *new std::vector; return v; } }; TEST(Make_UniqueTest, Array) { // Ensure state is clean before we start so that these tests // are order-agnostic. ArrayWatch::allocs().clear(); auto p = absl::make_unique(5); static_assert(std::is_same>::value, "unexpected return type"); EXPECT_THAT(ArrayWatch::allocs(), ElementsAre(5 * sizeof(ArrayWatch))); } TEST(Make_UniqueTest, NotAmbiguousWithStdMakeUnique) { // Ensure that absl::make_unique is not ambiguous with std::make_unique. // In C++14 mode, the below call to make_unique has both types as candidates. struct TakesStdType { explicit TakesStdType(const std::vector &vec) {} }; using absl::make_unique; (void)make_unique(std::vector()); } #if 0 // These tests shouldn't compile. TEST(MakeUniqueTestNC, AcceptMoveOnlyLvalue) { auto m = MoveOnly(); auto p = absl::make_unique(m); } TEST(MakeUniqueTestNC, KnownBoundArray) { auto p = absl::make_unique(); } #endif TEST(RawPtrTest, RawPointer) { int i = 5; EXPECT_EQ(&i, absl::RawPtr(&i)); } TEST(RawPtrTest, SmartPointer) { int* o = new int(5); std::unique_ptr p(o); EXPECT_EQ(o, absl::RawPtr(p)); } class IntPointerNonConstDeref { public: explicit IntPointerNonConstDeref(int* p) : p_(p) {} friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) { return a.p_ != nullptr; } int& operator*() { return *p_; } private: std::unique_ptr p_; }; TEST(RawPtrTest, SmartPointerNonConstDereference) { int* o = new int(5); IntPointerNonConstDeref p(o); EXPECT_EQ(o, absl::RawPtr(p)); } TEST(RawPtrTest, NullValuedRawPointer) { int* p = nullptr; EXPECT_EQ(nullptr, absl::RawPtr(p)); } TEST(RawPtrTest, NullValuedSmartPointer) { std::unique_ptr p; EXPECT_EQ(nullptr, absl::RawPtr(p)); } TEST(RawPtrTest, Nullptr) { auto p = absl::RawPtr(nullptr); EXPECT_TRUE((std::is_same::value)); EXPECT_EQ(nullptr, p); } TEST(RawPtrTest, Null) { auto p = absl::RawPtr(nullptr); EXPECT_TRUE((std::is_same::value)); EXPECT_EQ(nullptr, p); } TEST(RawPtrTest, Zero) { auto p = absl::RawPtr(nullptr); EXPECT_TRUE((std::is_same::value)); EXPECT_EQ(nullptr, p); } TEST(ShareUniquePtrTest, Share) { auto up = absl::make_unique(); int* rp = up.get(); auto sp = absl::ShareUniquePtr(std::move(up)); EXPECT_EQ(sp.get(), rp); } TEST(ShareUniquePtrTest, ShareNull) { struct NeverDie { using pointer = void*; void operator()(pointer) { ASSERT_TRUE(false) << "Deleter should not have been called."; } }; std::unique_ptr up; auto sp = absl::ShareUniquePtr(std::move(up)); } TEST(WeakenPtrTest, Weak) { auto sp = std::make_shared(); auto wp = absl::WeakenPtr(sp); EXPECT_EQ(sp.get(), wp.lock().get()); sp.reset(); EXPECT_TRUE(wp.expired()); } // Should not compile. /* TEST(RawPtrTest, NotAPointer) { absl::RawPtr(1.5); } */ template struct SmartPointer { using difference_type = char; }; struct PointerWith { using element_type = int32_t; using difference_type = int16_t; template using rebind = SmartPointer; static PointerWith pointer_to( element_type& r) { // NOLINT(runtime/references) return PointerWith{&r}; } element_type* ptr; }; template struct PointerWithout {}; TEST(PointerTraits, Types) { using TraitsWith = absl::pointer_traits; EXPECT_TRUE((std::is_same::value)); EXPECT_TRUE((std::is_same::value)); EXPECT_TRUE((std::is_same::value)); EXPECT_TRUE(( std::is_same, SmartPointer>::value)); using TraitsWithout = absl::pointer_traits>; EXPECT_TRUE((std::is_same>::value)); EXPECT_TRUE((std::is_same::value)); EXPECT_TRUE( (std::is_same::value)); EXPECT_TRUE((std::is_same, PointerWithout>::value)); using TraitsRawPtr = absl::pointer_traits; EXPECT_TRUE((std::is_same::value)); EXPECT_TRUE((std::is_same::value)); EXPECT_TRUE( (std::is_same::value)); EXPECT_TRUE((std::is_same, int64_t*>::value)); } TEST(PointerTraits, Functions) { int i; EXPECT_EQ(&i, absl::pointer_traits::pointer_to(i).ptr); EXPECT_EQ(&i, absl::pointer_traits::pointer_to(i)); } TEST(AllocatorTraits, Typedefs) { struct A { struct value_type {}; }; EXPECT_TRUE(( std::is_same::allocator_type>::value)); EXPECT_TRUE( (std::is_same::value_type>::value)); struct X {}; struct HasPointer { using value_type = X; using pointer = SmartPointer; }; EXPECT_TRUE((std::is_same, typename absl::allocator_traits< HasPointer>::pointer>::value)); EXPECT_TRUE( (std::is_same::pointer>::value)); EXPECT_TRUE( (std::is_same< SmartPointer, typename absl::allocator_traits::const_pointer>::value)); EXPECT_TRUE( (std::is_same::const_pointer>::value)); struct HasVoidPointer { using value_type = X; struct void_pointer {}; }; EXPECT_TRUE((std::is_same::void_pointer>::value)); EXPECT_TRUE( (std::is_same, typename absl::allocator_traits< HasPointer>::void_pointer>::value)); struct HasConstVoidPointer { using value_type = X; struct const_void_pointer {}; }; EXPECT_TRUE( (std::is_same::const_void_pointer>::value)); EXPECT_TRUE((std::is_same, typename absl::allocator_traits< HasPointer>::const_void_pointer>::value)); struct HasDifferenceType { using value_type = X; using difference_type = int; }; EXPECT_TRUE( (std::is_same::difference_type>::value)); EXPECT_TRUE((std::is_same::difference_type>::value)); struct HasSizeType { using value_type = X; using size_type = unsigned int; }; EXPECT_TRUE((std::is_same::size_type>::value)); EXPECT_TRUE((std::is_same::size_type>::value)); struct HasPropagateOnCopy { using value_type = X; struct propagate_on_container_copy_assignment {}; }; EXPECT_TRUE( (std::is_same:: propagate_on_container_copy_assignment>::value)); EXPECT_TRUE( (std::is_same::propagate_on_container_copy_assignment>::value)); struct HasPropagateOnMove { using value_type = X; struct propagate_on_container_move_assignment {}; }; EXPECT_TRUE( (std::is_same:: propagate_on_container_move_assignment>::value)); EXPECT_TRUE( (std::is_same::propagate_on_container_move_assignment>::value)); struct HasPropagateOnSwap { using value_type = X; struct propagate_on_container_swap {}; }; EXPECT_TRUE( (std::is_same:: propagate_on_container_swap>::value)); EXPECT_TRUE( (std::is_same:: propagate_on_container_swap>::value)); struct HasIsAlwaysEqual { using value_type = X; struct is_always_equal {}; }; EXPECT_TRUE((std::is_same::is_always_equal>::value)); EXPECT_TRUE((std::is_same::is_always_equal>::value)); struct NonEmpty { using value_type = X; int i; }; EXPECT_TRUE( (std::is_same::is_always_equal>::value)); } template struct AllocWithPrivateInheritance : private std::allocator { using value_type = T; }; TEST(AllocatorTraits, RebindWithPrivateInheritance) { // Regression test for some versions of gcc that do not like the sfinae we // used in combination with private inheritance. EXPECT_TRUE( (std::is_same, absl::allocator_traits>:: rebind_alloc>::value)); } template struct Rebound {}; struct AllocWithRebind { using value_type = int; template struct rebind { using other = Rebound; }; }; template struct AllocWithoutRebind { using value_type = int; }; TEST(AllocatorTraits, Rebind) { EXPECT_TRUE( (std::is_same, typename absl::allocator_traits< AllocWithRebind>::template rebind_alloc>::value)); EXPECT_TRUE( (std::is_same>, typename absl::allocator_traits< AllocWithRebind>::template rebind_traits>::value)); EXPECT_TRUE( (std::is_same, typename absl::allocator_traits>::template rebind_alloc>::value)); EXPECT_TRUE( (std::is_same>, typename absl::allocator_traits>::template rebind_traits>::value)); } struct TestValue { TestValue() {} explicit TestValue(int* trace) : trace(trace) { ++*trace; } ~TestValue() { if (trace) --*trace; } int* trace = nullptr; }; struct MinimalMockAllocator { MinimalMockAllocator() : value(0) {} explicit MinimalMockAllocator(int value) : value(value) {} MinimalMockAllocator(const MinimalMockAllocator& other) : value(other.value) {} using value_type = TestValue; MOCK_METHOD1(allocate, value_type*(size_t)); MOCK_METHOD2(deallocate, void(value_type*, size_t)); int value; }; TEST(AllocatorTraits, FunctionsMinimal) { int trace = 0; int hint; TestValue x(&trace); MinimalMockAllocator mock; using Traits = absl::allocator_traits; EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x)); EXPECT_CALL(mock, deallocate(&x, 7)); EXPECT_EQ(&x, Traits::allocate(mock, 7)); Traits::allocate(mock, 7, static_cast(&hint)); EXPECT_EQ(&x, Traits::allocate(mock, 7, static_cast(&hint))); Traits::deallocate(mock, &x, 7); EXPECT_EQ(1, trace); Traits::construct(mock, &x, &trace); EXPECT_EQ(2, trace); Traits::destroy(mock, &x); EXPECT_EQ(1, trace); EXPECT_EQ(std::numeric_limits::max() / sizeof(TestValue), Traits::max_size(mock)); EXPECT_EQ(0, mock.value); EXPECT_EQ(0, Traits::select_on_container_copy_construction(mock).value); } struct FullMockAllocator { FullMockAllocator() : value(0) {} explicit FullMockAllocator(int value) : value(value) {} FullMockAllocator(const FullMockAllocator& other) : value(other.value) {} using value_type = TestValue; MOCK_METHOD1(allocate, value_type*(size_t)); MOCK_METHOD2(allocate, value_type*(size_t, const void*)); MOCK_METHOD2(construct, void(value_type*, int*)); MOCK_METHOD1(destroy, void(value_type*)); MOCK_CONST_METHOD0(max_size, size_t()); MOCK_CONST_METHOD0(select_on_container_copy_construction, FullMockAllocator()); int value; }; TEST(AllocatorTraits, FunctionsFull) { int trace = 0; int hint; TestValue x(&trace), y; FullMockAllocator mock; using Traits = absl::allocator_traits; EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x)); EXPECT_CALL(mock, allocate(13, &hint)).WillRepeatedly(Return(&y)); EXPECT_CALL(mock, construct(&x, &trace)); EXPECT_CALL(mock, destroy(&x)); EXPECT_CALL(mock, max_size()).WillRepeatedly(Return(17)); EXPECT_CALL(mock, select_on_container_copy_construction()) .WillRepeatedly(Return(FullMockAllocator(23))); EXPECT_EQ(&x, Traits::allocate(mock, 7)); EXPECT_EQ(&y, Traits::allocate(mock, 13, static_cast(&hint))); EXPECT_EQ(1, trace); Traits::construct(mock, &x, &trace); EXPECT_EQ(1, trace); Traits::destroy(mock, &x); EXPECT_EQ(1, trace); EXPECT_EQ(17, Traits::max_size(mock)); EXPECT_EQ(0, mock.value); EXPECT_EQ(23, Traits::select_on_container_copy_construction(mock).value); } TEST(AllocatorNoThrowTest, DefaultAllocator) { #if ABSL_ALLOCATOR_NOTHROW EXPECT_TRUE(absl::default_allocator_is_nothrow::value); #else EXPECT_FALSE(absl::default_allocator_is_nothrow::value); #endif } TEST(AllocatorNoThrowTest, StdAllocator) { #if ABSL_ALLOCATOR_NOTHROW EXPECT_TRUE(absl::allocator_is_nothrow>::value); #else EXPECT_FALSE(absl::allocator_is_nothrow>::value); #endif } TEST(AllocatorNoThrowTest, CustomAllocator) { struct NoThrowAllocator { using is_nothrow = std::true_type; }; struct CanThrowAllocator { using is_nothrow = std::false_type; }; struct UnspecifiedAllocator { }; EXPECT_TRUE(absl::allocator_is_nothrow::value); EXPECT_FALSE(absl::allocator_is_nothrow::value); EXPECT_FALSE(absl::allocator_is_nothrow::value); } } // namespace