// Copyright 2022 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: log/log.h // ----------------------------------------------------------------------------- // // This header declares a family of LOG macros. // // Basic invocation looks like this: // // LOG(INFO) << "Found " << num_cookies << " cookies"; // // Most `LOG` macros take a severity level argument. The severity levels are // `INFO`, `WARNING`, `ERROR`, and `FATAL`. They are defined // in absl/base/log_severity.h. // * The `FATAL` severity level terminates the program with a stack trace after // logging its message. Error handlers registered with `RunOnFailure` // (process_state.h) are run, but exit handlers registered with `atexit(3)` // are not. // * The `QFATAL` pseudo-severity level is equivalent to `FATAL` but triggers // quieter termination messages, e.g. without a full stack trace, and skips // running registered error handlers. // Some preprocessor shenanigans are used to ensure that e.g. `LOG(INFO)` has // the same meaning even if a local symbol or preprocessor macro named `INFO` is // defined. To specify a severity level using an expression instead of a // literal, use `LEVEL(expr)`. // Example: // // LOG(LEVEL(stale ? absl::LogSeverity::kWarning : absl::LogSeverity::kInfo)) // << "Cookies are " << days << " days old"; // `LOG` macros evaluate to an unterminated statement. The value at the end of // the statement supports some chainable methods: // // * .AtLocation(absl::string_view file, int line) // .AtLocation(absl::SourceLocation loc) // Overrides the location inferred from the callsite. The string pointed to // by `file` must be valid until the end of the statement. // * .NoPrefix() // Omits the prefix from this line. The prefix includes metadata about the // logged data such as source code location and timestamp. // * .WithTimestamp(absl::Time timestamp) // Uses the specified timestamp instead of one collected at the time of // execution. // * .WithThreadID(absl::LogEntry::tid_t tid) // Uses the specified thread ID instead of one collected at the time of // execution. // * .WithMetadataFrom(const absl::LogEntry &entry) // Copies all metadata (but no data) from the specified `absl::LogEntry`. // This can be used to change the severity of a message, but it has some // limitations: // * `ABSL_MIN_LOG_LEVEL` is evaluated against the severity passed into // `LOG` (or the implicit `FATAL` level of `CHECK`). // * `LOG(FATAL)` and `CHECK` terminate the process unconditionally, even if // the severity is changed later. // `.WithMetadataFrom(entry)` should almost always be used in combination // with `LOG(LEVEL(entry.log_severity()))`. // * .WithPerror() // Appends to the logged message a colon, a space, a textual description of // the current value of `errno` (as by `strerror(3)`), and the numerical // value of `errno`. // * .ToSinkAlso(absl::LogSink* sink) // Sends this message to `*sink` in addition to whatever other sinks it // would otherwise have been sent to. `sink` must not be null. // * .ToSinkOnly(absl::LogSink* sink) // Sends this message to `*sink` and no others. `sink` must not be null. // // No interfaces in this header are async-signal-safe; their use in signal // handlers is unsupported and may deadlock your program or eat your lunch. // // Many logging statements are inherently conditional. For example, // `LOG_IF(INFO, !foo)` does nothing if `foo` is true. Even seemingly // unconditional statements like `LOG(INFO)` might be disabled at // compile-time to minimize binary size or for security reasons. // // * Except for the condition in a `CHECK` or `QCHECK` statement, programs must // not rely on evaluation of expressions anywhere in logging statements for // correctness. For example, this is ok: // // CHECK((fp = fopen("config.ini", "r")) != nullptr); // // But this is probably not ok: // // LOG(INFO) << "Server status: " << StartServerAndReturnStatusString(); // // The example below is bad too; the `i++` in the `LOG_IF` condition might // not be evaluated, resulting in an infinite loop: // // for (int i = 0; i < 1000000;) // LOG_IF(INFO, i++ % 1000 == 0) << "Still working..."; // // * Except where otherwise noted, conditions which cause a statement not to log // also cause expressions not to be evaluated. Programs may rely on this for // performance reasons, e.g. by streaming the result of an expensive function // call into a `DLOG` or `LOG_EVERY_N` statement. // * Care has been taken to ensure that expressions are parsed by the compiler // even if they are never evaluated. This means that syntax errors will be // caught and variables will be considered used for the purposes of // unused-variable diagnostics. For example, this statement won't compile // even if `INFO`-level logging has been compiled out: // // int number_of_cakes = 40; // LOG(INFO) << "Number of cakes: " << number_of_cake; // Note the typo! // // Similarly, this won't produce unused-variable compiler diagnostics even // if `INFO`-level logging is compiled out: // // { // char fox_line1[] = "Hatee-hatee-hatee-ho!"; // LOG_IF(ERROR, false) << "The fox says " << fox_line1; // char fox_line2[] = "A-oo-oo-oo-ooo!"; // LOG(INFO) << "The fox also says " << fox_line2; // } // // This error-checking is not perfect; for example, symbols that have been // declared but not defined may not produce link errors if used in logging // statements that compile away. // // Expressions streamed into these macros are formatted using `operator<<` just // as they would be if streamed into a `std::ostream`, however it should be // noted that their actual type is unspecified. // // To implement a custom formatting operator for a type you own, there are two // options: `AbslStringify()` or `std::ostream& operator<<(std::ostream&, ...)`. // It is recommended that users make their types loggable through // `AbslStringify()` as it is a universal stringification extension that also // enables `absl::StrFormat` and `absl::StrCat` support. If both // `AbslStringify()` and `std::ostream& operator<<(std::ostream&, ...)` are // defined, `AbslStringify()` will be used. // // To use the `AbslStringify()` API, define a friend function template in your // type's namespace with the following signature: // // template // void AbslStringify(Sink& sink, const UserDefinedType& value); // // `Sink` has the same interface as `absl::FormatSink`, but without // `PutPaddedString()`. // // Example: // // struct Point { // template // friend void AbslStringify(Sink& sink, const Point& p) { // absl::Format(&sink, "(%v, %v)", p.x, p.y); // } // // int x; // int y; // }; // // To use `std::ostream& operator<<(std::ostream&, ...)`, define // `std::ostream& operator<<(std::ostream&, ...)` in your type's namespace (for // ADL) just as you would to stream it to `std::cout`. // // Currently `AbslStringify()` ignores output manipulators but this is not // guaranteed behavior and may be subject to change in the future. If you would // like guaranteed behavior regarding output manipulators, please use // `std::ostream& operator<<(std::ostream&, ...)` to make custom types loggable // instead. // // Those macros that support streaming honor output manipulators and `fmtflag` // changes that output data (e.g. `std::ends`) or control formatting of data // (e.g. `std::hex` and `std::fixed`), however flushing such a stream is // ignored. The message produced by a log statement is sent to registered // `absl::LogSink` instances at the end of the statement; those sinks are // responsible for their own flushing (e.g. to disk) semantics. // // Flag settings are not carried over from one `LOG` statement to the next; this // is a bit different than e.g. `std::cout`: // // LOG(INFO) << std::hex << 0xdeadbeef; // logs "0xdeadbeef" // LOG(INFO) << 0xdeadbeef; // logs "3735928559" #ifndef ABSL_LOG_LOG_H_ #define ABSL_LOG_LOG_H_ #include "absl/log/internal/log_impl.h" // LOG() // // `LOG` takes a single argument which is a severity level. Data streamed in // comprise the logged message. // Example: // // LOG(INFO) << "Found " << num_cookies << " cookies"; #define LOG(severity) ABSL_LOG_INTERNAL_LOG_IMPL(_##severity) // PLOG() // // `PLOG` behaves like `LOG` except that a description of the current state of // `errno` is appended to the streamed message. #define PLOG(severity) ABSL_LOG_INTERNAL_PLOG_IMPL(_##severity) // DLOG() // // `DLOG` behaves like `LOG` in debug mode (i.e. `#ifndef NDEBUG`). Otherwise // it compiles away and does nothing. Note that `DLOG(FATAL)` does not // terminate the program if `NDEBUG` is defined. #define DLOG(severity) ABSL_LOG_INTERNAL_DLOG_IMPL(_##severity) // `LOG_IF` and friends add a second argument which specifies a condition. If // the condition is false, nothing is logged. // Example: // // LOG_IF(INFO, num_cookies > 10) << "Got lots of cookies"; #define LOG_IF(severity, condition) \ ABSL_LOG_INTERNAL_LOG_IF_IMPL(_##severity, condition) #define PLOG_IF(severity, condition) \ ABSL_LOG_INTERNAL_PLOG_IF_IMPL(_##severity, condition) #define DLOG_IF(severity, condition) \ ABSL_LOG_INTERNAL_DLOG_IF_IMPL(_##severity, condition) // LOG_EVERY_N // // An instance of `LOG_EVERY_N` increments a hidden zero-initialized counter // every time execution passes through it and logs the specified message when // the counter's value is a multiple of `n`, doing nothing otherwise. Each // instance has its own counter. The counter's value can be logged by streaming // the symbol `COUNTER`. `LOG_EVERY_N` is thread-safe. // Example: // // LOG_EVERY_N(WARNING, 1000) << "Got a packet with a bad CRC (" << COUNTER // << " total)"; #define LOG_EVERY_N(severity, n) \ ABSL_LOG_INTERNAL_LOG_EVERY_N_IMPL(_##severity, n) // LOG_FIRST_N // // `LOG_FIRST_N` behaves like `LOG_EVERY_N` except that the specified message is // logged when the counter's value is less than `n`. `LOG_FIRST_N` is // thread-safe. #define LOG_FIRST_N(severity, n) \ ABSL_LOG_INTERNAL_LOG_FIRST_N_IMPL(_##severity, n) // LOG_EVERY_POW_2 // // `LOG_EVERY_POW_2` behaves like `LOG_EVERY_N` except that the specified // message is logged when the counter's value is a power of 2. // `LOG_EVERY_POW_2` is thread-safe. #define LOG_EVERY_POW_2(severity) \ ABSL_LOG_INTERNAL_LOG_EVERY_POW_2_IMPL(_##severity) // LOG_EVERY_N_SEC // // An instance of `LOG_EVERY_N_SEC` uses a hidden state variable to log the // specified message at most once every `n_seconds`. A hidden counter of // executions (whether a message is logged or not) is also maintained and can be // logged by streaming the symbol `COUNTER`. `LOG_EVERY_N_SEC` is thread-safe. // Example: // // LOG_EVERY_N_SEC(INFO, 2.5) << "Got " << COUNTER << " cookies so far"; #define LOG_EVERY_N_SEC(severity, n_seconds) \ ABSL_LOG_INTERNAL_LOG_EVERY_N_SEC_IMPL(_##severity, n_seconds) #define PLOG_EVERY_N(severity, n) \ ABSL_LOG_INTERNAL_PLOG_EVERY_N_IMPL(_##severity, n) #define PLOG_FIRST_N(severity, n) \ ABSL_LOG_INTERNAL_PLOG_FIRST_N_IMPL(_##severity, n) #define PLOG_EVERY_POW_2(severity) \ ABSL_LOG_INTERNAL_PLOG_EVERY_POW_2_IMPL(_##severity) #define PLOG_EVERY_N_SEC(severity, n_seconds) \ ABSL_LOG_INTERNAL_PLOG_EVERY_N_SEC_IMPL(_##severity, n_seconds) #define DLOG_EVERY_N(severity, n) \ ABSL_LOG_INTERNAL_DLOG_EVERY_N_IMPL(_##severity, n) #define DLOG_FIRST_N(severity, n) \ ABSL_LOG_INTERNAL_DLOG_FIRST_N_IMPL(_##severity, n) #define DLOG_EVERY_POW_2(severity) \ ABSL_LOG_INTERNAL_DLOG_EVERY_POW_2_IMPL(_##severity) #define DLOG_EVERY_N_SEC(severity, n_seconds) \ ABSL_LOG_INTERNAL_DLOG_EVERY_N_SEC_IMPL(_##severity, n_seconds) // `LOG_IF_EVERY_N` and friends behave as the corresponding `LOG_EVERY_N` // but neither increment a counter nor log a message if condition is false (as // `LOG_IF`). // Example: // // LOG_IF_EVERY_N(INFO, (size > 1024), 10) << "Got the " << COUNTER // << "th big cookie"; #define LOG_IF_EVERY_N(severity, condition, n) \ ABSL_LOG_INTERNAL_LOG_IF_EVERY_N_IMPL(_##severity, condition, n) #define LOG_IF_FIRST_N(severity, condition, n) \ ABSL_LOG_INTERNAL_LOG_IF_FIRST_N_IMPL(_##severity, condition, n) #define LOG_IF_EVERY_POW_2(severity, condition) \ ABSL_LOG_INTERNAL_LOG_IF_EVERY_POW_2_IMPL(_##severity, condition) #define LOG_IF_EVERY_N_SEC(severity, condition, n_seconds) \ ABSL_LOG_INTERNAL_LOG_IF_EVERY_N_SEC_IMPL(_##severity, condition, n_seconds) #define PLOG_IF_EVERY_N(severity, condition, n) \ ABSL_LOG_INTERNAL_PLOG_IF_EVERY_N_IMPL(_##severity, condition, n) #define PLOG_IF_FIRST_N(severity, condition, n) \ ABSL_LOG_INTERNAL_PLOG_IF_FIRST_N_IMPL(_##severity, condition, n) #define PLOG_IF_EVERY_POW_2(severity, condition) \ ABSL_LOG_INTERNAL_PLOG_IF_EVERY_POW_2_IMPL(_##severity, condition) #define PLOG_IF_EVERY_N_SEC(severity, condition, n_seconds) \ ABSL_LOG_INTERNAL_PLOG_IF_EVERY_N_SEC_IMPL(_##severity, condition, n_seconds) #define DLOG_IF_EVERY_N(severity, condition, n) \ ABSL_LOG_INTERNAL_DLOG_IF_EVERY_N_IMPL(_##severity, condition, n) #define DLOG_IF_FIRST_N(severity, condition, n) \ ABSL_LOG_INTERNAL_DLOG_IF_FIRST_N_IMPL(_##severity, condition, n) #define DLOG_IF_EVERY_POW_2(severity, condition) \ ABSL_LOG_INTERNAL_DLOG_IF_EVERY_POW_2_IMPL(_##severity, condition) #define DLOG_IF_EVERY_N_SEC(severity, condition, n_seconds) \ ABSL_LOG_INTERNAL_DLOG_IF_EVERY_N_SEC_IMPL(_##severity, condition, n_seconds) #endif // ABSL_LOG_LOG_H_