// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: hash.h // ----------------------------------------------------------------------------- // #ifndef ABSL_HASH_INTERNAL_HASH_H_ #define ABSL_HASH_INTERNAL_HASH_H_ #include <algorithm> #include <array> #include <cmath> #include <cstring> #include <deque> #include <forward_list> #include <functional> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <set> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/base/internal/endian.h" #include "absl/base/port.h" #include "absl/container/fixed_array.h" #include "absl/meta/type_traits.h" #include "absl/numeric/int128.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "absl/utility/utility.h" #include "absl/hash/internal/city.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace hash_internal { class PiecewiseCombiner; // Internal detail: Large buffers are hashed in smaller chunks. This function // returns the size of these chunks. constexpr int PiecewiseChunkSize() { return 1024; } // HashStateBase // // A hash state object represents an intermediate state in the computation // of an unspecified hash algorithm. `HashStateBase` provides a CRTP style // base class for hash state implementations. Developers adding type support // for `absl::Hash` should not rely on any parts of the state object other than // the following member functions: // // * HashStateBase::combine() // * HashStateBase::combine_contiguous() // // A derived hash state class of type `H` must provide a static member function // with a signature similar to the following: // // `static H combine_contiguous(H state, const unsigned char*, size_t)`. // // `HashStateBase` will provide a complete implementation for a hash state // object in terms of this method. // // Example: // // // Use CRTP to define your derived class. // struct MyHashState : HashStateBase<MyHashState> { // static H combine_contiguous(H state, const unsigned char*, size_t); // using MyHashState::HashStateBase::combine; // using MyHashState::HashStateBase::combine_contiguous; // }; template <typename H> class HashStateBase { public: // HashStateBase::combine() // // Combines an arbitrary number of values into a hash state, returning the // updated state. // // Each of the value types `T` must be separately hashable by the Abseil // hashing framework. // // NOTE: // // state = H::combine(std::move(state), value1, value2, value3); // // is guaranteed to produce the same hash expansion as: // // state = H::combine(std::move(state), value1); // state = H::combine(std::move(state), value2); // state = H::combine(std::move(state), value3); template <typename T, typename... Ts> static H combine(H state, const T& value, const Ts&... values); static H combine(H state) { return state; } // HashStateBase::combine_contiguous() // // Combines a contiguous array of `size` elements into a hash state, returning // the updated state. // // NOTE: // // state = H::combine_contiguous(std::move(state), data, size); // // is NOT guaranteed to produce the same hash expansion as a for-loop (it may // perform internal optimizations). If you need this guarantee, use the // for-loop instead. template <typename T> static H combine_contiguous(H state, const T* data, size_t size); private: friend class PiecewiseCombiner; }; // is_uniquely_represented // // `is_uniquely_represented<T>` is a trait class that indicates whether `T` // is uniquely represented. // // A type is "uniquely represented" if two equal values of that type are // guaranteed to have the same bytes in their underlying storage. In other // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be // zero. This property cannot be detected automatically, so this trait is false // by default, but can be specialized by types that wish to assert that they are // uniquely represented. This makes them eligible for certain optimizations. // // If you have any doubt whatsoever, do not specialize this template. // The default is completely safe, and merely disables some optimizations // that will not matter for most types. Specializing this template, // on the other hand, can be very hazardous. // // To be uniquely represented, a type must not have multiple ways of // representing the same value; for example, float and double are not // uniquely represented, because they have distinct representations for // +0 and -0. Furthermore, the type's byte representation must consist // solely of user-controlled data, with no padding bits and no compiler- // controlled data such as vptrs or sanitizer metadata. This is usually // very difficult to guarantee, because in most cases the compiler can // insert data and padding bits at its own discretion. // // If you specialize this template for a type `T`, you must do so in the file // that defines that type (or in this file). If you define that specialization // anywhere else, `is_uniquely_represented<T>` could have different meanings // in different places. // // The Enable parameter is meaningless; it is provided as a convenience, // to support certain SFINAE techniques when defining specializations. template <typename T, typename Enable = void> struct is_uniquely_represented : std::false_type {}; // is_uniquely_represented<unsigned char> // // unsigned char is a synonym for "byte", so it is guaranteed to be // uniquely represented. template <> struct is_uniquely_represented<unsigned char> : std::true_type {}; // is_uniquely_represented for non-standard integral types // // Integral types other than bool should be uniquely represented on any // platform that this will plausibly be ported to. template <typename Integral> struct is_uniquely_represented< Integral, typename std::enable_if<std::is_integral<Integral>::value>::type> : std::true_type {}; // is_uniquely_represented<bool> // // template <> struct is_uniquely_represented<bool> : std::false_type {}; // hash_bytes() // // Convenience function that combines `hash_state` with the byte representation // of `value`. template <typename H, typename T> H hash_bytes(H hash_state, const T& value) { const unsigned char* start = reinterpret_cast<const unsigned char*>(&value); return H::combine_contiguous(std::move(hash_state), start, sizeof(value)); } // PiecewiseCombiner // // PiecewiseCombiner is an internal-only helper class for hashing a piecewise // buffer of `char` or `unsigned char` as though it were contiguous. This class // provides two methods: // // H add_buffer(state, data, size) // H finalize(state) // // `add_buffer` can be called zero or more times, followed by a single call to // `finalize`. This will produce the same hash expansion as concatenating each // buffer piece into a single contiguous buffer, and passing this to // `H::combine_contiguous`. // // Example usage: // PiecewiseCombiner combiner; // for (const auto& piece : pieces) { // state = combiner.add_buffer(std::move(state), piece.data, piece.size); // } // return combiner.finalize(std::move(state)); class PiecewiseCombiner { public: PiecewiseCombiner() : position_(0) {} PiecewiseCombiner(const PiecewiseCombiner&) = delete; PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete; // PiecewiseCombiner::add_buffer() // // Appends the given range of bytes to the sequence to be hashed, which may // modify the provided hash state. template <typename H> H add_buffer(H state, const unsigned char* data, size_t size); template <typename H> H add_buffer(H state, const char* data, size_t size) { return add_buffer(std::move(state), reinterpret_cast<const unsigned char*>(data), size); } // PiecewiseCombiner::finalize() // // Finishes combining the hash sequence, which may may modify the provided // hash state. // // Once finalize() is called, add_buffer() may no longer be called. The // resulting hash state will be the same as if the pieces passed to // add_buffer() were concatenated into a single flat buffer, and then provided // to H::combine_contiguous(). template <typename H> H finalize(H state); private: unsigned char buf_[PiecewiseChunkSize()]; size_t position_; }; // ----------------------------------------------------------------------------- // AbslHashValue for Basic Types // ----------------------------------------------------------------------------- // Note: Default `AbslHashValue` implementations live in `hash_internal`. This // allows us to block lexical scope lookup when doing an unqualified call to // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can // only be found via ADL. // AbslHashValue() for hashing bool values // // We use SFINAE to ensure that this overload only accepts bool, not types that // are convertible to bool. template <typename H, typename B> typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue( H hash_state, B value) { return H::combine(std::move(hash_state), static_cast<unsigned char>(value ? 1 : 0)); } // AbslHashValue() for hashing enum values template <typename H, typename Enum> typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue( H hash_state, Enum e) { // In practice, we could almost certainly just invoke hash_bytes directly, // but it's possible that a sanitizer might one day want to // store data in the unused bits of an enum. To avoid that risk, we // convert to the underlying type before hashing. Hopefully this will get // optimized away; if not, we can reopen discussion with c-toolchain-team. return H::combine(std::move(hash_state), static_cast<typename std::underlying_type<Enum>::type>(e)); } // AbslHashValue() for hashing floating-point values template <typename H, typename Float> typename std::enable_if<std::is_same<Float, float>::value || std::is_same<Float, double>::value, H>::type AbslHashValue(H hash_state, Float value) { return hash_internal::hash_bytes(std::move(hash_state), value == 0 ? 0 : value); } // Long double has the property that it might have extra unused bytes in it. // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits // of it. This means we can't use hash_bytes on a long double and have to // convert it to something else first. template <typename H, typename LongDouble> typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type AbslHashValue(H hash_state, LongDouble value) { const int category = std::fpclassify(value); switch (category) { case FP_INFINITE: // Add the sign bit to differentiate between +Inf and -Inf hash_state = H::combine(std::move(hash_state), std::signbit(value)); break; case FP_NAN: case FP_ZERO: default: // Category is enough for these. break; case FP_NORMAL: case FP_SUBNORMAL: // We can't convert `value` directly to double because this would have // undefined behavior if the value is out of range. // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is // guaranteed to be in range for `double`. The truncation is // implementation defined, but that works as long as it is deterministic. int exp; auto mantissa = static_cast<double>(std::frexp(value, &exp)); hash_state = H::combine(std::move(hash_state), mantissa, exp); } return H::combine(std::move(hash_state), category); } // AbslHashValue() for hashing pointers template <typename H, typename T> H AbslHashValue(H hash_state, T* ptr) { auto v = reinterpret_cast<uintptr_t>(ptr); // Due to alignment, pointers tend to have low bits as zero, and the next few // bits follow a pattern since they are also multiples of some base value. // Mixing the pointer twice helps prevent stuck low bits for certain alignment // values. return H::combine(std::move(hash_state), v, v); } // AbslHashValue() for hashing nullptr_t template <typename H> H AbslHashValue(H hash_state, std::nullptr_t) { return H::combine(std::move(hash_state), static_cast<void*>(nullptr)); } // ----------------------------------------------------------------------------- // AbslHashValue for Composite Types // ----------------------------------------------------------------------------- // is_hashable() // // Trait class which returns true if T is hashable by the absl::Hash framework. // Used for the AbslHashValue implementations for composite types below. template <typename T> struct is_hashable; // AbslHashValue() for hashing pairs template <typename H, typename T1, typename T2> typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value, H>::type AbslHashValue(H hash_state, const std::pair<T1, T2>& p) { return H::combine(std::move(hash_state), p.first, p.second); } // hash_tuple() // // Helper function for hashing a tuple. The third argument should // be an index_sequence running from 0 to tuple_size<Tuple> - 1. template <typename H, typename Tuple, size_t... Is> H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) { return H::combine(std::move(hash_state), std::get<Is>(t)...); } // AbslHashValue for hashing tuples template <typename H, typename... Ts> #if defined(_MSC_VER) // This SFINAE gets MSVC confused under some conditions. Let's just disable it // for now. H #else // _MSC_VER typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type #endif // _MSC_VER AbslHashValue(H hash_state, const std::tuple<Ts...>& t) { return hash_internal::hash_tuple(std::move(hash_state), t, absl::make_index_sequence<sizeof...(Ts)>()); } // ----------------------------------------------------------------------------- // AbslHashValue for Pointers // ----------------------------------------------------------------------------- // AbslHashValue for hashing unique_ptr template <typename H, typename T, typename D> H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) { return H::combine(std::move(hash_state), ptr.get()); } // AbslHashValue for hashing shared_ptr template <typename H, typename T> H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) { return H::combine(std::move(hash_state), ptr.get()); } // ----------------------------------------------------------------------------- // AbslHashValue for String-Like Types // ----------------------------------------------------------------------------- // AbslHashValue for hashing strings // // All the string-like types supported here provide the same hash expansion for // the same character sequence. These types are: // // - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for // any allocator A) // - `absl::string_view` and `std::string_view` // // For simplicity, we currently support only `char` strings. This support may // be broadened, if necessary, but with some caution - this overload would // misbehave in cases where the traits' `eq()` member isn't equivalent to `==` // on the underlying character type. template <typename H> H AbslHashValue(H hash_state, absl::string_view str) { return H::combine( H::combine_contiguous(std::move(hash_state), str.data(), str.size()), str.size()); } // Support std::wstring, std::u16string and std::u32string. template <typename Char, typename Alloc, typename H, typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value || std::is_same<Char, char16_t>::value || std::is_same<Char, char32_t>::value>> H AbslHashValue( H hash_state, const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) { return H::combine( H::combine_contiguous(std::move(hash_state), str.data(), str.size()), str.size()); } // ----------------------------------------------------------------------------- // AbslHashValue for Sequence Containers // ----------------------------------------------------------------------------- // AbslHashValue for hashing std::array template <typename H, typename T, size_t N> typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( H hash_state, const std::array<T, N>& array) { return H::combine_contiguous(std::move(hash_state), array.data(), array.size()); } // AbslHashValue for hashing std::deque template <typename H, typename T, typename Allocator> typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( H hash_state, const std::deque<T, Allocator>& deque) { // TODO(gromer): investigate a more efficient implementation taking // advantage of the chunk structure. for (const auto& t : deque) { hash_state = H::combine(std::move(hash_state), t); } return H::combine(std::move(hash_state), deque.size()); } // AbslHashValue for hashing std::forward_list template <typename H, typename T, typename Allocator> typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( H hash_state, const std::forward_list<T, Allocator>& list) { size_t size = 0; for (const T& t : list) { hash_state = H::combine(std::move(hash_state), t); ++size; } return H::combine(std::move(hash_state), size); } // AbslHashValue for hashing std::list template <typename H, typename T, typename Allocator> typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( H hash_state, const std::list<T, Allocator>& list) { for (const auto& t : list) { hash_state = H::combine(std::move(hash_state), t); } return H::combine(std::move(hash_state), list.size()); } // AbslHashValue for hashing std::vector // // Do not use this for vector<bool>. It does not have a .data(), and a fallback // for std::hash<> is most likely faster. template <typename H, typename T, typename Allocator> typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value, H>::type AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(), vector.size()), vector.size()); } // ----------------------------------------------------------------------------- // AbslHashValue for Ordered Associative Containers // ----------------------------------------------------------------------------- // AbslHashValue for hashing std::map template <typename H, typename Key, typename T, typename Compare, typename Allocator> typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, H>::type AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) { for (const auto& t : map) { hash_state = H::combine(std::move(hash_state), t); } return H::combine(std::move(hash_state), map.size()); } // AbslHashValue for hashing std::multimap template <typename H, typename Key, typename T, typename Compare, typename Allocator> typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, H>::type AbslHashValue(H hash_state, const std::multimap<Key, T, Compare, Allocator>& map) { for (const auto& t : map) { hash_state = H::combine(std::move(hash_state), t); } return H::combine(std::move(hash_state), map.size()); } // AbslHashValue for hashing std::set template <typename H, typename Key, typename Compare, typename Allocator> typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( H hash_state, const std::set<Key, Compare, Allocator>& set) { for (const auto& t : set) { hash_state = H::combine(std::move(hash_state), t); } return H::combine(std::move(hash_state), set.size()); } // AbslHashValue for hashing std::multiset template <typename H, typename Key, typename Compare, typename Allocator> typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( H hash_state, const std::multiset<Key, Compare, Allocator>& set) { for (const auto& t : set) { hash_state = H::combine(std::move(hash_state), t); } return H::combine(std::move(hash_state), set.size()); } // ----------------------------------------------------------------------------- // AbslHashValue for Wrapper Types // ----------------------------------------------------------------------------- // AbslHashValue for hashing absl::optional template <typename H, typename T> typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( H hash_state, const absl::optional<T>& opt) { if (opt) hash_state = H::combine(std::move(hash_state), *opt); return H::combine(std::move(hash_state), opt.has_value()); } // VariantVisitor template <typename H> struct VariantVisitor { H&& hash_state; template <typename T> H operator()(const T& t) const { return H::combine(std::move(hash_state), t); } }; // AbslHashValue for hashing absl::variant template <typename H, typename... T> typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type AbslHashValue(H hash_state, const absl::variant<T...>& v) { if (!v.valueless_by_exception()) { hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v); } return H::combine(std::move(hash_state), v.index()); } // ----------------------------------------------------------------------------- // AbslHashValue for Other Types // ----------------------------------------------------------------------------- // AbslHashValue for hashing std::bitset is not defined, for the same reason as // for vector<bool> (see std::vector above): It does not expose the raw bytes, // and a fallback to std::hash<> is most likely faster. // ----------------------------------------------------------------------------- // hash_range_or_bytes() // // Mixes all values in the range [data, data+size) into the hash state. // This overload accepts only uniquely-represented types, and hashes them by // hashing the entire range of bytes. template <typename H, typename T> typename std::enable_if<is_uniquely_represented<T>::value, H>::type hash_range_or_bytes(H hash_state, const T* data, size_t size) { const auto* bytes = reinterpret_cast<const unsigned char*>(data); return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size); } // hash_range_or_bytes() template <typename H, typename T> typename std::enable_if<!is_uniquely_represented<T>::value, H>::type hash_range_or_bytes(H hash_state, const T* data, size_t size) { for (const auto end = data + size; data < end; ++data) { hash_state = H::combine(std::move(hash_state), *data); } return hash_state; } #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \ ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1 #else #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0 #endif // HashSelect // // Type trait to select the appropriate hash implementation to use. // HashSelect::type<T> will give the proper hash implementation, to be invoked // as: // HashSelect::type<T>::Invoke(state, value) // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a // valid `Invoke` function. Types that are not hashable will have a ::value of // `false`. struct HashSelect { private: struct State : HashStateBase<State> { static State combine_contiguous(State hash_state, const unsigned char*, size_t); using State::HashStateBase::combine_contiguous; }; struct UniquelyRepresentedProbe { template <typename H, typename T> static auto Invoke(H state, const T& value) -> absl::enable_if_t<is_uniquely_represented<T>::value, H> { return hash_internal::hash_bytes(std::move(state), value); } }; struct HashValueProbe { template <typename H, typename T> static auto Invoke(H state, const T& value) -> absl::enable_if_t< std::is_same<H, decltype(AbslHashValue(std::move(state), value))>::value, H> { return AbslHashValue(std::move(state), value); } }; struct LegacyHashProbe { #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ template <typename H, typename T> static auto Invoke(H state, const T& value) -> absl::enable_if_t< std::is_convertible< decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)), size_t>::value, H> { return hash_internal::hash_bytes( std::move(state), ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value)); } #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ }; struct StdHashProbe { template <typename H, typename T> static auto Invoke(H state, const T& value) -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> { return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value)); } }; template <typename Hash, typename T> struct Probe : Hash { private: template <typename H, typename = decltype(H::Invoke( std::declval<State>(), std::declval<const T&>()))> static std::true_type Test(int); template <typename U> static std::false_type Test(char); public: static constexpr bool value = decltype(Test<Hash>(0))::value; }; public: // Probe each implementation in order. // disjunction provides short circuiting wrt instantiation. template <typename T> using Apply = absl::disjunction< // Probe<UniquelyRepresentedProbe, T>, // Probe<HashValueProbe, T>, // Probe<LegacyHashProbe, T>, // Probe<StdHashProbe, T>, // std::false_type>; }; template <typename T> struct is_hashable : std::integral_constant<bool, HashSelect::template Apply<T>::value> {}; // CityHashState class CityHashState : public HashStateBase<CityHashState> { // absl::uint128 is not an alias or a thin wrapper around the intrinsic. // We use the intrinsic when available to improve performance. #ifdef ABSL_HAVE_INTRINSIC_INT128 using uint128 = __uint128_t; #else // ABSL_HAVE_INTRINSIC_INT128 using uint128 = absl::uint128; #endif // ABSL_HAVE_INTRINSIC_INT128 static constexpr uint64_t kMul = sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51} : uint64_t{0x9ddfea08eb382d69}; template <typename T> using IntegralFastPath = conjunction<std::is_integral<T>, is_uniquely_represented<T>>; public: // Move only CityHashState(CityHashState&&) = default; CityHashState& operator=(CityHashState&&) = default; // CityHashState::combine_contiguous() // // Fundamental base case for hash recursion: mixes the given range of bytes // into the hash state. static CityHashState combine_contiguous(CityHashState hash_state, const unsigned char* first, size_t size) { return CityHashState( CombineContiguousImpl(hash_state.state_, first, size, std::integral_constant<int, sizeof(size_t)>{})); } using CityHashState::HashStateBase::combine_contiguous; // CityHashState::hash() // // For performance reasons in non-opt mode, we specialize this for // integral types. // Otherwise we would be instantiating and calling dozens of functions for // something that is just one multiplication and a couple xor's. // The result should be the same as running the whole algorithm, but faster. template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0> static size_t hash(T value) { return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value))); } // Overload of CityHashState::hash() template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0> static size_t hash(const T& value) { return static_cast<size_t>(combine(CityHashState{}, value).state_); } private: // Invoked only once for a given argument; that plus the fact that this is // move-only ensures that there is only one non-moved-from object. CityHashState() : state_(Seed()) {} // Workaround for MSVC bug. // We make the type copyable to fix the calling convention, even though we // never actually copy it. Keep it private to not affect the public API of the // type. CityHashState(const CityHashState&) = default; explicit CityHashState(uint64_t state) : state_(state) {} // Implementation of the base case for combine_contiguous where we actually // mix the bytes into the state. // Dispatch to different implementations of the combine_contiguous depending // on the value of `sizeof(size_t)`. static uint64_t CombineContiguousImpl(uint64_t state, const unsigned char* first, size_t len, std::integral_constant<int, 4> /* sizeof_size_t */); static uint64_t CombineContiguousImpl(uint64_t state, const unsigned char* first, size_t len, std::integral_constant<int, 8> /* sizeof_size_t*/); // Slow dispatch path for calls to CombineContiguousImpl with a size argument // larger than PiecewiseChunkSize(). Has the same effect as calling // CombineContiguousImpl() repeatedly with the chunk stride size. static uint64_t CombineLargeContiguousImpl32(uint64_t state, const unsigned char* first, size_t len); static uint64_t CombineLargeContiguousImpl64(uint64_t state, const unsigned char* first, size_t len); // Reads 9 to 16 bytes from p. // The first 8 bytes are in .first, the rest (zero padded) bytes are in // .second. static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p, size_t len) { uint64_t high = little_endian::Load64(p + len - 8); return {little_endian::Load64(p), high >> (128 - len * 8)}; } // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t. static uint64_t Read4To8(const unsigned char* p, size_t len) { return (static_cast<uint64_t>(little_endian::Load32(p + len - 4)) << (len - 4) * 8) | little_endian::Load32(p); } // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t. static uint32_t Read1To3(const unsigned char* p, size_t len) { return static_cast<uint32_t>((p[0]) | // (p[len / 2] << (len / 2 * 8)) | // (p[len - 1] << ((len - 1) * 8))); } ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) { using MultType = absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>; // We do the addition in 64-bit space to make sure the 128-bit // multiplication is fast. If we were to do it as MultType the compiler has // to assume that the high word is non-zero and needs to perform 2 // multiplications instead of one. MultType m = state + v; m *= kMul; return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2))); } // Seed() // // A non-deterministic seed. // // The current purpose of this seed is to generate non-deterministic results // and prevent having users depend on the particular hash values. // It is not meant as a security feature right now, but it leaves the door // open to upgrade it to a true per-process random seed. A true random seed // costs more and we don't need to pay for that right now. // // On platforms with ASLR, we take advantage of it to make a per-process // random value. // See https://en.wikipedia.org/wiki/Address_space_layout_randomization // // On other platforms this is still going to be non-deterministic but most // probably per-build and not per-process. ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() { return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed)); } static const void* const kSeed; uint64_t state_; }; // CityHashState::CombineContiguousImpl() inline uint64_t CityHashState::CombineContiguousImpl( uint64_t state, const unsigned char* first, size_t len, std::integral_constant<int, 4> /* sizeof_size_t */) { // For large values we use CityHash, for small ones we just use a // multiplicative hash. uint64_t v; if (len > 8) { if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { return CombineLargeContiguousImpl32(state, first, len); } v = absl::hash_internal::CityHash32(reinterpret_cast<const char*>(first), len); } else if (len >= 4) { v = Read4To8(first, len); } else if (len > 0) { v = Read1To3(first, len); } else { // Empty ranges have no effect. return state; } return Mix(state, v); } // Overload of CityHashState::CombineContiguousImpl() inline uint64_t CityHashState::CombineContiguousImpl( uint64_t state, const unsigned char* first, size_t len, std::integral_constant<int, 8> /* sizeof_size_t */) { // For large values we use CityHash, for small ones we just use a // multiplicative hash. uint64_t v; if (len > 16) { if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { return CombineLargeContiguousImpl64(state, first, len); } v = absl::hash_internal::CityHash64(reinterpret_cast<const char*>(first), len); } else if (len > 8) { auto p = Read9To16(first, len); state = Mix(state, p.first); v = p.second; } else if (len >= 4) { v = Read4To8(first, len); } else if (len > 0) { v = Read1To3(first, len); } else { // Empty ranges have no effect. return state; } return Mix(state, v); } struct AggregateBarrier {}; // HashImpl // Add a private base class to make sure this type is not an aggregate. // Aggregates can be aggregate initialized even if the default constructor is // deleted. struct PoisonedHash : private AggregateBarrier { PoisonedHash() = delete; PoisonedHash(const PoisonedHash&) = delete; PoisonedHash& operator=(const PoisonedHash&) = delete; }; template <typename T> struct HashImpl { size_t operator()(const T& value) const { return CityHashState::hash(value); } }; template <typename T> struct Hash : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {}; template <typename H> template <typename T, typename... Ts> H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) { return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke( std::move(state), value), values...); } // HashStateBase::combine_contiguous() template <typename H> template <typename T> H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) { return hash_internal::hash_range_or_bytes(std::move(state), data, size); } // HashStateBase::PiecewiseCombiner::add_buffer() template <typename H> H PiecewiseCombiner::add_buffer(H state, const unsigned char* data, size_t size) { if (position_ + size < PiecewiseChunkSize()) { // This partial chunk does not fill our existing buffer memcpy(buf_ + position_, data, size); position_ += size; return std::move(state); } // Complete the buffer and hash it const size_t bytes_needed = PiecewiseChunkSize() - position_; memcpy(buf_ + position_, data, bytes_needed); state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize()); data += bytes_needed; size -= bytes_needed; // Hash whatever chunks we can without copying while (size >= PiecewiseChunkSize()) { state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize()); data += PiecewiseChunkSize(); size -= PiecewiseChunkSize(); } // Fill the buffer with the remainder memcpy(buf_, data, size); position_ = size; return std::move(state); } // HashStateBase::PiecewiseCombiner::finalize() template <typename H> H PiecewiseCombiner::finalize(H state) { // Hash the remainder left in the buffer, which may be empty return H::combine_contiguous(std::move(state), buf_, position_); } } // namespace hash_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_HASH_INTERNAL_HASH_H_