// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: hash.h // ----------------------------------------------------------------------------- // // This header file defines the Abseil `hash` library and the Abseil hashing // framework. This framework consists of the following: // // * The `absl::Hash` functor, which is used to invoke the hasher within the // Abseil hashing framework. `absl::Hash` supports most basic types and // a number of Abseil types out of the box. // * `AbslHashValue`, an extension point that allows you to extend types to // support Abseil hashing without requiring you to define a hashing // algorithm. // * `HashState`, a type-erased class which implements the manipulation of the // hash state (H) itself; contains member functions `combine()`, // `combine_contiguous()`, and `combine_unordered()`; and which you can use // to contribute to an existing hash state when hashing your types. // // Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework // provides most of its utility by abstracting away the hash algorithm (and its // implementation) entirely. Instead, a type invokes the Abseil hashing // framework by simply combining its state with the state of known, hashable // types. Hashing of that combined state is separately done by `absl::Hash`. // // One should assume that a hash algorithm is chosen randomly at the start of // each process. E.g., `absl::Hash{}(9)` in one process and // `absl::Hash{}(9)` in another process are likely to differ. // // `absl::Hash` may also produce different values from different dynamically // loaded libraries. For this reason, `absl::Hash` values must never cross // boundaries in dynamically loaded libraries (including when used in types like // hash containers.) // // `absl::Hash` is intended to strongly mix input bits with a target of passing // an [Avalanche Test](https://en.wikipedia.org/wiki/Avalanche_effect). // // Example: // // // Suppose we have a class `Circle` for which we want to add hashing: // class Circle { // public: // ... // private: // std::pair center_; // int radius_; // }; // // // To add hashing support to `Circle`, we simply need to add a free // // (non-member) function `AbslHashValue()`, and return the combined hash // // state of the existing hash state and the class state. You can add such a // // free function using a friend declaration within the body of the class: // class Circle { // public: // ... // template // friend H AbslHashValue(H h, const Circle& c) { // return H::combine(std::move(h), c.center_, c.radius_); // } // ... // }; // // For more information, see Adding Type Support to `absl::Hash` below. // #ifndef ABSL_HASH_HASH_H_ #define ABSL_HASH_HASH_H_ #include #include #include "absl/functional/function_ref.h" #include "absl/hash/internal/hash.h" namespace absl { ABSL_NAMESPACE_BEGIN // ----------------------------------------------------------------------------- // `absl::Hash` // ----------------------------------------------------------------------------- // // `absl::Hash` is a convenient general-purpose hash functor for any type `T` // satisfying any of the following conditions (in order): // // * T is an arithmetic or pointer type // * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary // hash state `H`. // - T defines a specialization of `std::hash` // // `absl::Hash` intrinsically supports the following types: // // * All integral types (including bool) // * All enum types // * All floating-point types (although hashing them is discouraged) // * All pointer types, including nullptr_t // * std::pair, if T1 and T2 are hashable // * std::tuple, if all the Ts... are hashable // * std::unique_ptr and std::shared_ptr // * All string-like types including: // * absl::Cord // * std::string (as well as any instance of std::basic_string that // uses one of {char, wchar_t, char16_t, char32_t} and its associated // std::char_traits) // * std::string_view (as well as any instance of std::basic_string_view // that uses one of {char, wchar_t, char16_t, char32_t} and its associated // std::char_traits) // * All the standard sequence containers (provided the elements are hashable) // * All the standard associative containers (provided the elements are // hashable) // * absl types such as the following: // * absl::string_view // * absl::uint128 // * absl::Time, absl::Duration, and absl::TimeZone // * absl containers (provided the elements are hashable) such as the // following: // * absl::flat_hash_set, absl::node_hash_set, absl::btree_set // * absl::flat_hash_map, absl::node_hash_map, absl::btree_map // * absl::btree_multiset, absl::btree_multimap // * absl::InlinedVector // * absl::FixedArray // // When absl::Hash is used to hash an unordered container with a custom hash // functor, the elements are hashed using default absl::Hash semantics, not // the custom hash functor. This is consistent with the behavior of // operator==() on unordered containers, which compares elements pairwise with // operator==() rather than the custom equality functor. It is usually a // mistake to use either operator==() or absl::Hash on unordered collections // that use functors incompatible with operator==() equality. // // Note: the list above is not meant to be exhaustive. Additional type support // may be added, in which case the above list will be updated. // // ----------------------------------------------------------------------------- // absl::Hash Invocation Evaluation // ----------------------------------------------------------------------------- // // When invoked, `absl::Hash` searches for supplied hash functions in the // following order: // // * Natively supported types out of the box (see above) // * Types for which an `AbslHashValue()` overload is provided (such as // user-defined types). See "Adding Type Support to `absl::Hash`" below. // * Types which define a `std::hash` specialization // // The fallback to legacy hash functions exists mainly for backwards // compatibility. If you have a choice, prefer defining an `AbslHashValue` // overload instead of specializing any legacy hash functors. // // ----------------------------------------------------------------------------- // The Hash State Concept, and using `HashState` for Type Erasure // ----------------------------------------------------------------------------- // // The `absl::Hash` framework relies on the Concept of a "hash state." Such a // hash state is used in several places: // // * Within existing implementations of `absl::Hash` to store the hashed // state of an object. Note that it is up to the implementation how it stores // such state. A hash table, for example, may mix the state to produce an // integer value; a testing framework may simply hold a vector of that state. // * Within implementations of `AbslHashValue()` used to extend user-defined // types. (See "Adding Type Support to absl::Hash" below.) // * Inside a `HashState`, providing type erasure for the concept of a hash // state, which you can use to extend the `absl::Hash` framework for types // that are otherwise difficult to extend using `AbslHashValue()`. (See the // `HashState` class below.) // // The "hash state" concept contains three member functions for mixing hash // state: // // * `H::combine(state, values...)` // // Combines an arbitrary number of values into a hash state, returning the // updated state. Note that the existing hash state is move-only and must be // passed by value. // // Each of the value types T must be hashable by H. // // NOTE: // // state = H::combine(std::move(state), value1, value2, value3); // // must be guaranteed to produce the same hash expansion as // // state = H::combine(std::move(state), value1); // state = H::combine(std::move(state), value2); // state = H::combine(std::move(state), value3); // // * `H::combine_contiguous(state, data, size)` // // Combines a contiguous array of `size` elements into a hash state, // returning the updated state. Note that the existing hash state is // move-only and must be passed by value. // // NOTE: // // state = H::combine_contiguous(std::move(state), data, size); // // need NOT be guaranteed to produce the same hash expansion as a loop // (it may perform internal optimizations). If you need this guarantee, use a // loop instead. // // * `H::combine_unordered(state, begin, end)` // // Combines a set of elements denoted by an iterator pair into a hash // state, returning the updated state. Note that the existing hash // state is move-only and must be passed by value. // // Unlike the other two methods, the hashing is order-independent. // This can be used to hash unordered collections. // // ----------------------------------------------------------------------------- // Adding Type Support to `absl::Hash` // ----------------------------------------------------------------------------- // // To add support for your user-defined type, add a proper `AbslHashValue()` // overload as a free (non-member) function. The overload will take an // existing hash state and should combine that state with state from the type. // // Example: // // template // H AbslHashValue(H state, const MyType& v) { // return H::combine(std::move(state), v.field1, ..., v.fieldN); // } // // where `(field1, ..., fieldN)` are the members you would use on your // `operator==` to define equality. // // Notice that `AbslHashValue` is not a class member, but an ordinary function. // An `AbslHashValue` overload for a type should only be declared in the same // file and namespace as said type. The proper `AbslHashValue` implementation // for a given type will be discovered via ADL. // // Note: unlike `std::hash', `absl::Hash` should never be specialized. It must // only be extended by adding `AbslHashValue()` overloads. // template using Hash = absl::hash_internal::Hash; // HashOf // // absl::HashOf() is a helper that generates a hash from the values of its // arguments. It dispatches to absl::Hash directly, as follows: // * HashOf(t) == absl::Hash{}(t) // * HashOf(a, b, c) == HashOf(std::make_tuple(a, b, c)) // // HashOf(a1, a2, ...) == HashOf(b1, b2, ...) is guaranteed when // * The argument lists have pairwise identical C++ types // * a1 == b1 && a2 == b2 && ... // // The requirement that the arguments match in both type and value is critical. // It means that `a == b` does not necessarily imply `HashOf(a) == HashOf(b)` if // `a` and `b` have different types. For example, `HashOf(2) != HashOf(2.0)`. template size_t HashOf(const Types&... values) { auto tuple = std::tie(values...); return absl::Hash{}(tuple); } // HashState // // A type erased version of the hash state concept, for use in user-defined // `AbslHashValue` implementations that can't use templates (such as PImpl // classes, virtual functions, etc.). The type erasure adds overhead so it // should be avoided unless necessary. // // Note: This wrapper will only erase calls to // combine_contiguous(H, const unsigned char*, size_t) // RunCombineUnordered(H, CombinerF) // // All other calls will be handled internally and will not invoke overloads // provided by the wrapped class. // // Users of this class should still define a template `AbslHashValue` function, // but can use `absl::HashState::Create(&state)` to erase the type of the hash // state and dispatch to their private hashing logic. // // This state can be used like any other hash state. In particular, you can call // `HashState::combine()` and `HashState::combine_contiguous()` on it. // // Example: // // class Interface { // public: // template // friend H AbslHashValue(H state, const Interface& value) { // state = H::combine(std::move(state), std::type_index(typeid(*this))); // value.HashValue(absl::HashState::Create(&state)); // return state; // } // private: // virtual void HashValue(absl::HashState state) const = 0; // }; // // class Impl : Interface { // private: // void HashValue(absl::HashState state) const override { // absl::HashState::combine(std::move(state), v1_, v2_); // } // int v1_; // std::string v2_; // }; class HashState : public hash_internal::HashStateBase { public: // HashState::Create() // // Create a new `HashState` instance that wraps `state`. All calls to // `combine()` and `combine_contiguous()` on the new instance will be // redirected to the original `state` object. The `state` object must outlive // the `HashState` instance. template static HashState Create(T* state) { HashState s; s.Init(state); return s; } HashState(const HashState&) = delete; HashState& operator=(const HashState&) = delete; HashState(HashState&&) = default; HashState& operator=(HashState&&) = default; // HashState::combine() // // Combines an arbitrary number of values into a hash state, returning the // updated state. using HashState::HashStateBase::combine; // HashState::combine_contiguous() // // Combines a contiguous array of `size` elements into a hash state, returning // the updated state. static HashState combine_contiguous(HashState hash_state, const unsigned char* first, size_t size) { hash_state.combine_contiguous_(hash_state.state_, first, size); return hash_state; } using HashState::HashStateBase::combine_contiguous; private: HashState() = default; friend class HashState::HashStateBase; template static void CombineContiguousImpl(void* p, const unsigned char* first, size_t size) { T& state = *static_cast(p); state = T::combine_contiguous(std::move(state), first, size); } template void Init(T* state) { state_ = state; combine_contiguous_ = &CombineContiguousImpl; run_combine_unordered_ = &RunCombineUnorderedImpl; } template struct CombineUnorderedInvoker { template void operator()(T inner_state, ConsumerT inner_cb) { f(HashState::Create(&inner_state), [&](HashState& inner_erased) { inner_cb(inner_erased.Real()); }); } absl::FunctionRef)> f; }; template static HashState RunCombineUnorderedImpl( HashState state, absl::FunctionRef)> f) { // Note that this implementation assumes that inner_state and outer_state // are the same type. This isn't true in the SpyHash case, but SpyHash // types are move-convertible to each other, so this still works. T& real_state = state.Real(); real_state = T::RunCombineUnordered( std::move(real_state), CombineUnorderedInvoker{f}); return state; } template static HashState RunCombineUnordered(HashState state, CombinerT combiner) { auto* run = state.run_combine_unordered_; return run(std::move(state), std::ref(combiner)); } // Do not erase an already erased state. void Init(HashState* state) { state_ = state->state_; combine_contiguous_ = state->combine_contiguous_; run_combine_unordered_ = state->run_combine_unordered_; } template T& Real() { return *static_cast(state_); } void* state_; void (*combine_contiguous_)(void*, const unsigned char*, size_t); HashState (*run_combine_unordered_)( HashState state, absl::FunctionRef)>); }; ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_HASH_HASH_H_