// // Copyright 2020 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "absl/flags/flag.h" #include "absl/flags/marshalling.h" #include "absl/flags/parse.h" #include "absl/flags/reflection.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "benchmark/benchmark.h" namespace { using String = std::string; using VectorOfStrings = std::vector; using AbslDuration = absl::Duration; // We do not want to take over marshalling for the types absl::optional, // absl::optional which we do not own. Instead we introduce unique // "aliases" to these types, which we do. using AbslOptionalInt = absl::optional; struct OptionalInt : AbslOptionalInt { using AbslOptionalInt::AbslOptionalInt; }; // Next two functions represent Abseil Flags marshalling for OptionalInt. bool AbslParseFlag(absl::string_view src, OptionalInt* flag, std::string* error) { int val; if (src.empty()) flag->reset(); else if (!absl::ParseFlag(src, &val, error)) return false; *flag = val; return true; } std::string AbslUnparseFlag(const OptionalInt& flag) { return !flag ? "" : absl::UnparseFlag(*flag); } using AbslOptionalString = absl::optional; struct OptionalString : AbslOptionalString { using AbslOptionalString::AbslOptionalString; }; // Next two functions represent Abseil Flags marshalling for OptionalString. bool AbslParseFlag(absl::string_view src, OptionalString* flag, std::string* error) { std::string val; if (src.empty()) flag->reset(); else if (!absl::ParseFlag(src, &val, error)) return false; *flag = val; return true; } std::string AbslUnparseFlag(const OptionalString& flag) { return !flag ? "" : absl::UnparseFlag(*flag); } struct UDT { UDT() = default; UDT(const UDT&) {} UDT& operator=(const UDT&) { return *this; } }; // Next two functions represent Abseil Flags marshalling for UDT. bool AbslParseFlag(absl::string_view, UDT*, std::string*) { return true; } std::string AbslUnparseFlag(const UDT&) { return ""; } } // namespace #define BENCHMARKED_TYPES(A) \ A(bool) \ A(int16_t) \ A(uint16_t) \ A(int32_t) \ A(uint32_t) \ A(int64_t) \ A(uint64_t) \ A(double) \ A(float) \ A(String) \ A(VectorOfStrings) \ A(OptionalInt) \ A(OptionalString) \ A(AbslDuration) \ A(UDT) #define REPLICATE_0(A, T, name, index) A(T, name, index) #define REPLICATE_1(A, T, name, index) \ REPLICATE_0(A, T, name, index##0) REPLICATE_0(A, T, name, index##1) #define REPLICATE_2(A, T, name, index) \ REPLICATE_1(A, T, name, index##0) REPLICATE_1(A, T, name, index##1) #define REPLICATE_3(A, T, name, index) \ REPLICATE_2(A, T, name, index##0) REPLICATE_2(A, T, name, index##1) #define REPLICATE_4(A, T, name, index) \ REPLICATE_3(A, T, name, index##0) REPLICATE_3(A, T, name, index##1) #define REPLICATE_5(A, T, name, index) \ REPLICATE_4(A, T, name, index##0) REPLICATE_4(A, T, name, index##1) #define REPLICATE_6(A, T, name, index) \ REPLICATE_5(A, T, name, index##0) REPLICATE_5(A, T, name, index##1) #define REPLICATE_7(A, T, name, index) \ REPLICATE_6(A, T, name, index##0) REPLICATE_6(A, T, name, index##1) #define REPLICATE_8(A, T, name, index) \ REPLICATE_7(A, T, name, index##0) REPLICATE_7(A, T, name, index##1) #define REPLICATE_9(A, T, name, index) \ REPLICATE_8(A, T, name, index##0) REPLICATE_8(A, T, name, index##1) #if defined(_MSC_VER) #define REPLICATE(A, T, name) \ REPLICATE_7(A, T, name, 0) REPLICATE_7(A, T, name, 1) #define SINGLE_FLAG(T) FLAGS_##T##_flag_00000000 #else #define REPLICATE(A, T, name) \ REPLICATE_9(A, T, name, 0) REPLICATE_9(A, T, name, 1) #define SINGLE_FLAG(T) FLAGS_##T##_flag_0000000000 #endif #define REPLICATE_ALL(A, T, name) \ REPLICATE_9(A, T, name, 0) REPLICATE_9(A, T, name, 1) #define COUNT(T, name, index) +1 constexpr size_t kNumFlags = 0 REPLICATE(COUNT, _, _); #if defined(__clang__) && defined(__linux__) // Force the flags used for benchmarks into a separate ELF section. // This ensures that, even when other parts of the code might change size, // the layout of the flags across cachelines is kept constant. This makes // benchmark results more reproducible across unrelated code changes. #pragma clang section data = ".benchmark_flags" #endif #define DEFINE_FLAG(T, name, index) ABSL_FLAG(T, name##_##index, {}, ""); #define FLAG_DEF(T) REPLICATE(DEFINE_FLAG, T, T##_flag) BENCHMARKED_TYPES(FLAG_DEF) #if defined(__clang__) && defined(__linux__) #pragma clang section data = "" #endif // Register thousands of flags to bloat up the size of the registry. // This mimics real life production binaries. #define BLOAT_FLAG(_unused1, _unused2, index) \ ABSL_FLAG(int, bloat_flag_##index, 0, ""); REPLICATE_ALL(BLOAT_FLAG, _, _) namespace { #define FLAG_PTR(T, name, index) &FLAGS_##name##_##index, #define FLAG_PTR_ARR(T) \ static constexpr absl::Flag* FlagPtrs_##T[] = { \ REPLICATE(FLAG_PTR, T, T##_flag)}; BENCHMARKED_TYPES(FLAG_PTR_ARR) #define BM_SingleGetFlag(T) \ void BM_SingleGetFlag_##T(benchmark::State& state) { \ for (auto _ : state) { \ benchmark::DoNotOptimize(absl::GetFlag(SINGLE_FLAG(T))); \ } \ } \ BENCHMARK(BM_SingleGetFlag_##T)->ThreadRange(1, 16); BENCHMARKED_TYPES(BM_SingleGetFlag) template struct Accumulator { using type = T; }; template <> struct Accumulator { using type = size_t; }; template <> struct Accumulator { using type = size_t; }; template <> struct Accumulator { using type = bool; }; template <> struct Accumulator { using type = bool; }; template <> struct Accumulator { using type = bool; }; template void Accumulate(typename Accumulator::type& a, const T& f) { a += f; } void Accumulate(bool& a, bool f) { a = a || f; } void Accumulate(size_t& a, const std::string& f) { a += f.size(); } void Accumulate(size_t& a, const std::vector& f) { a += f.size(); } void Accumulate(bool& a, const OptionalInt& f) { a |= f.has_value(); } void Accumulate(bool& a, const OptionalString& f) { a |= f.has_value(); } void Accumulate(bool& a, const UDT& f) { a |= reinterpret_cast(&f) & 0x1; } #define BM_ManyGetFlag(T) \ void BM_ManyGetFlag_##T(benchmark::State& state) { \ Accumulator::type res = {}; \ while (state.KeepRunningBatch(kNumFlags)) { \ for (auto* flag_ptr : FlagPtrs_##T) { \ Accumulate(res, absl::GetFlag(*flag_ptr)); \ } \ } \ benchmark::DoNotOptimize(res); \ } \ BENCHMARK(BM_ManyGetFlag_##T)->ThreadRange(1, 8); BENCHMARKED_TYPES(BM_ManyGetFlag) void BM_ThreadedFindCommandLineFlag(benchmark::State& state) { char dummy[] = "dummy"; char* argv[] = {dummy}; // We need to ensure that flags have been parsed. That is where the registry // is finalized. absl::ParseCommandLine(1, argv); while (state.KeepRunningBatch(kNumFlags)) { for (auto* flag_ptr : FlagPtrs_bool) { benchmark::DoNotOptimize(absl::FindCommandLineFlag(flag_ptr->Name())); } } } BENCHMARK(BM_ThreadedFindCommandLineFlag)->ThreadRange(1, 16); } // namespace #ifdef __llvm__ // To view disassembly use: gdb ${BINARY} -batch -ex "disassemble /s $FUNC" #define InvokeGetFlag(T) \ T AbslInvokeGetFlag##T() { return absl::GetFlag(SINGLE_FLAG(T)); } \ int odr##T = (benchmark::DoNotOptimize(AbslInvokeGetFlag##T), 1); BENCHMARKED_TYPES(InvokeGetFlag) #endif // __llvm__