// Copyright 2022 The Abseil Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_CRC_INTERNAL_NON_TEMPORAL_MEMCPY_H_ #define ABSL_CRC_INTERNAL_NON_TEMPORAL_MEMCPY_H_ #ifdef _MSC_VER #include #endif #ifdef __SSE__ #include #endif #ifdef __SSE2__ #include #endif #ifdef __SSE3__ #include #endif #ifdef __AVX__ #include #endif #ifdef __aarch64__ #include "absl/crc/internal/non_temporal_arm_intrinsics.h" #endif #include #include #include #include #include "absl/base/config.h" #include "absl/base/optimization.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace crc_internal { // This non-temporal memcpy does regular load and non-temporal store memory // copy. It is compatible to both 16-byte aligned and unaligned addresses. If // data at the destination is not immediately accessed, using non-temporal // memcpy can save 1 DRAM load of the destination cacheline. constexpr size_t kCacheLineSize = ABSL_CACHELINE_SIZE; // If the objects overlap, the behavior is undefined. inline void *non_temporal_store_memcpy(void *__restrict dst, const void *__restrict src, size_t len) { #if defined(__SSE3__) || defined(__aarch64__) || \ (defined(_MSC_VER) && defined(__AVX__)) // This implementation requires SSE3. // MSVC cannot target SSE3 directly, but when MSVC targets AVX, // SSE3 support is implied. uint8_t *d = reinterpret_cast(dst); const uint8_t *s = reinterpret_cast(src); // memcpy() the misaligned header. At the end of this if block, is // aligned to a 64-byte cacheline boundary or == 0. if (reinterpret_cast(d) & (kCacheLineSize - 1)) { uintptr_t bytes_before_alignment_boundary = kCacheLineSize - (reinterpret_cast(d) & (kCacheLineSize - 1)); size_t header_len = (std::min)(bytes_before_alignment_boundary, len); assert(bytes_before_alignment_boundary < kCacheLineSize); memcpy(d, s, header_len); d += header_len; s += header_len; len -= header_len; } if (len >= kCacheLineSize) { _mm_sfence(); __m128i *dst_cacheline = reinterpret_cast<__m128i *>(d); const __m128i *src_cacheline = reinterpret_cast(s); constexpr int kOpsPerCacheLine = kCacheLineSize / sizeof(__m128i); size_t loops = len / kCacheLineSize; while (len >= kCacheLineSize) { __m128i temp1, temp2, temp3, temp4; temp1 = _mm_lddqu_si128(src_cacheline + 0); temp2 = _mm_lddqu_si128(src_cacheline + 1); temp3 = _mm_lddqu_si128(src_cacheline + 2); temp4 = _mm_lddqu_si128(src_cacheline + 3); _mm_stream_si128(dst_cacheline + 0, temp1); _mm_stream_si128(dst_cacheline + 1, temp2); _mm_stream_si128(dst_cacheline + 2, temp3); _mm_stream_si128(dst_cacheline + 3, temp4); src_cacheline += kOpsPerCacheLine; dst_cacheline += kOpsPerCacheLine; len -= kCacheLineSize; } d += loops * kCacheLineSize; s += loops * kCacheLineSize; _mm_sfence(); } // memcpy the tail. if (len) { memcpy(d, s, len); } return dst; #else // Fallback to regular memcpy. return memcpy(dst, src, len); #endif // __SSE3__ || __aarch64__ || (_MSC_VER && __AVX__) } inline void *non_temporal_store_memcpy_avx(void *__restrict dst, const void *__restrict src, size_t len) { #ifdef __AVX__ uint8_t *d = reinterpret_cast(dst); const uint8_t *s = reinterpret_cast(src); // memcpy() the misaligned header. At the end of this if block, is // aligned to a 64-byte cacheline boundary or == 0. if (reinterpret_cast(d) & (kCacheLineSize - 1)) { uintptr_t bytes_before_alignment_boundary = kCacheLineSize - (reinterpret_cast(d) & (kCacheLineSize - 1)); size_t header_len = (std::min)(bytes_before_alignment_boundary, len); assert(bytes_before_alignment_boundary < kCacheLineSize); memcpy(d, s, header_len); d += header_len; s += header_len; len -= header_len; } if (len >= kCacheLineSize) { _mm_sfence(); __m256i *dst_cacheline = reinterpret_cast<__m256i *>(d); const __m256i *src_cacheline = reinterpret_cast(s); constexpr int kOpsPerCacheLine = kCacheLineSize / sizeof(__m256i); size_t loops = len / kCacheLineSize; while (len >= kCacheLineSize) { __m256i temp1, temp2; temp1 = _mm256_lddqu_si256(src_cacheline + 0); temp2 = _mm256_lddqu_si256(src_cacheline + 1); _mm256_stream_si256(dst_cacheline + 0, temp1); _mm256_stream_si256(dst_cacheline + 1, temp2); src_cacheline += kOpsPerCacheLine; dst_cacheline += kOpsPerCacheLine; len -= kCacheLineSize; } d += loops * kCacheLineSize; s += loops * kCacheLineSize; _mm_sfence(); } // memcpy the tail. if (len) { memcpy(d, s, len); } return dst; #else // Fallback to regular memcpy when AVX is not available. return memcpy(dst, src, len); #endif // __AVX__ } } // namespace crc_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_CRC_INTERNAL_NON_TEMPORAL_MEMCPY_H_