// Copyright 2019 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "benchmark/benchmark.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/macros.h" #include "absl/container/inlined_vector.h" #include "absl/strings/str_cat.h" namespace { void BM_InlinedVectorFill(benchmark::State& state) { absl::InlinedVector v; int val = 10; for (auto _ : state) { benchmark::DoNotOptimize(v); v.push_back(val); } } BENCHMARK(BM_InlinedVectorFill)->Range(0, 1024); void BM_InlinedVectorFillRange(benchmark::State& state) { const int len = state.range(0); std::unique_ptr ia(new int[len]); for (int i = 0; i < len; i++) { ia[i] = i; } auto* from = ia.get(); auto* to = from + len; for (auto _ : state) { benchmark::DoNotOptimize(from); benchmark::DoNotOptimize(to); absl::InlinedVector v(from, to); benchmark::DoNotOptimize(v); } } BENCHMARK(BM_InlinedVectorFillRange)->Range(0, 1024); void BM_StdVectorFill(benchmark::State& state) { std::vector v; int val = 10; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(val); v.push_back(val); } } BENCHMARK(BM_StdVectorFill)->Range(0, 1024); // The purpose of the next two benchmarks is to verify that // absl::InlinedVector is efficient when moving is more efficent than // copying. To do so, we use strings that are larger than the short // string optimization. bool StringRepresentedInline(std::string s) { const char* chars = s.data(); std::string s1 = std::move(s); return s1.data() != chars; } int GetNonShortStringOptimizationSize() { for (int i = 24; i <= 192; i *= 2) { if (!StringRepresentedInline(std::string(i, 'A'))) { return i; } } ABSL_RAW_LOG( FATAL, "Failed to find a std::string larger than the short std::string optimization"); return -1; } void BM_InlinedVectorFillString(benchmark::State& state) { const int len = state.range(0); const int no_sso = GetNonShortStringOptimizationSize(); std::string strings[4] = {std::string(no_sso, 'A'), std::string(no_sso, 'B'), std::string(no_sso, 'C'), std::string(no_sso, 'D')}; for (auto _ : state) { absl::InlinedVector v; for (int i = 0; i < len; i++) { v.push_back(strings[i & 3]); } } state.SetItemsProcessed(static_cast(state.iterations()) * len); } BENCHMARK(BM_InlinedVectorFillString)->Range(0, 1024); void BM_StdVectorFillString(benchmark::State& state) { const int len = state.range(0); const int no_sso = GetNonShortStringOptimizationSize(); std::string strings[4] = {std::string(no_sso, 'A'), std::string(no_sso, 'B'), std::string(no_sso, 'C'), std::string(no_sso, 'D')}; for (auto _ : state) { std::vector v; for (int i = 0; i < len; i++) { v.push_back(strings[i & 3]); } } state.SetItemsProcessed(static_cast(state.iterations()) * len); } BENCHMARK(BM_StdVectorFillString)->Range(0, 1024); struct Buffer { // some arbitrary structure for benchmarking. char* base; int length; int capacity; void* user_data; }; void BM_InlinedVectorAssignments(benchmark::State& state) { const int len = state.range(0); using BufferVec = absl::InlinedVector; BufferVec src; src.resize(len); BufferVec dst; for (auto _ : state) { benchmark::DoNotOptimize(dst); benchmark::DoNotOptimize(src); dst = src; } } BENCHMARK(BM_InlinedVectorAssignments) ->Arg(0) ->Arg(1) ->Arg(2) ->Arg(3) ->Arg(4) ->Arg(20); void BM_CreateFromContainer(benchmark::State& state) { for (auto _ : state) { absl::InlinedVector src{1, 2, 3}; benchmark::DoNotOptimize(src); absl::InlinedVector dst(std::move(src)); benchmark::DoNotOptimize(dst); } } BENCHMARK(BM_CreateFromContainer); struct LargeCopyableOnly { LargeCopyableOnly() : d(1024, 17) {} LargeCopyableOnly(const LargeCopyableOnly& o) = default; LargeCopyableOnly& operator=(const LargeCopyableOnly& o) = default; std::vector d; }; struct LargeCopyableSwappable { LargeCopyableSwappable() : d(1024, 17) {} LargeCopyableSwappable(const LargeCopyableSwappable& o) = default; LargeCopyableSwappable& operator=(LargeCopyableSwappable o) { using std::swap; swap(*this, o); return *this; } friend void swap(LargeCopyableSwappable& a, LargeCopyableSwappable& b) { using std::swap; swap(a.d, b.d); } std::vector d; }; struct LargeCopyableMovable { LargeCopyableMovable() : d(1024, 17) {} // Use implicitly defined copy and move. std::vector d; }; struct LargeCopyableMovableSwappable { LargeCopyableMovableSwappable() : d(1024, 17) {} LargeCopyableMovableSwappable(const LargeCopyableMovableSwappable& o) = default; LargeCopyableMovableSwappable(LargeCopyableMovableSwappable&& o) = default; LargeCopyableMovableSwappable& operator=(LargeCopyableMovableSwappable o) { using std::swap; swap(*this, o); return *this; } LargeCopyableMovableSwappable& operator=(LargeCopyableMovableSwappable&& o) = default; friend void swap(LargeCopyableMovableSwappable& a, LargeCopyableMovableSwappable& b) { using std::swap; swap(a.d, b.d); } std::vector d; }; template void BM_SwapElements(benchmark::State& state) { const int len = state.range(0); using Vec = absl::InlinedVector; Vec a(len); Vec b; for (auto _ : state) { using std::swap; benchmark::DoNotOptimize(a); benchmark::DoNotOptimize(b); swap(a, b); } } BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableOnly)->Range(0, 1024); BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableSwappable)->Range(0, 1024); BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableMovable)->Range(0, 1024); BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableMovableSwappable) ->Range(0, 1024); // The following benchmark is meant to track the efficiency of the vector size // as a function of stored type via the benchmark label. It is not meant to // output useful sizeof operator performance. The loop is a dummy operation // to fulfill the requirement of running the benchmark. template void BM_Sizeof(benchmark::State& state) { int size = 0; for (auto _ : state) { VecType vec; size = sizeof(vec); } state.SetLabel(absl::StrCat("sz=", size)); } BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector); void BM_InlinedVectorIndexInlined(benchmark::State& state) { absl::InlinedVector v = {1, 2, 3, 4, 5, 6, 7}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v[4]); } } BENCHMARK(BM_InlinedVectorIndexInlined); void BM_InlinedVectorIndexExternal(benchmark::State& state) { absl::InlinedVector v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v[4]); } } BENCHMARK(BM_InlinedVectorIndexExternal); void BM_StdVectorIndex(benchmark::State& state) { std::vector v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v[4]); } } BENCHMARK(BM_StdVectorIndex); void BM_InlinedVectorDataInlined(benchmark::State& state) { absl::InlinedVector v = {1, 2, 3, 4, 5, 6, 7}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v.data()); } } BENCHMARK(BM_InlinedVectorDataInlined); void BM_InlinedVectorDataExternal(benchmark::State& state) { absl::InlinedVector v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v.data()); } state.SetItemsProcessed(16 * static_cast(state.iterations())); } BENCHMARK(BM_InlinedVectorDataExternal); void BM_StdVectorData(benchmark::State& state) { std::vector v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v.data()); } state.SetItemsProcessed(16 * static_cast(state.iterations())); } BENCHMARK(BM_StdVectorData); void BM_InlinedVectorSizeInlined(benchmark::State& state) { absl::InlinedVector v = {1, 2, 3, 4, 5, 6, 7}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v.size()); } } BENCHMARK(BM_InlinedVectorSizeInlined); void BM_InlinedVectorSizeExternal(benchmark::State& state) { absl::InlinedVector v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v.size()); } } BENCHMARK(BM_InlinedVectorSizeExternal); void BM_StdVectorSize(benchmark::State& state) { std::vector v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v.size()); } } BENCHMARK(BM_StdVectorSize); void BM_InlinedVectorEmptyInlined(benchmark::State& state) { absl::InlinedVector v = {1, 2, 3, 4, 5, 6, 7}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v.empty()); } } BENCHMARK(BM_InlinedVectorEmptyInlined); void BM_InlinedVectorEmptyExternal(benchmark::State& state) { absl::InlinedVector v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v.empty()); } } BENCHMARK(BM_InlinedVectorEmptyExternal); void BM_StdVectorEmpty(benchmark::State& state) { std::vector v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; for (auto _ : state) { benchmark::DoNotOptimize(v); benchmark::DoNotOptimize(v.empty()); } } BENCHMARK(BM_StdVectorEmpty); constexpr size_t kInlinedCapacity = 4; constexpr size_t kLargeSize = kInlinedCapacity * 2; constexpr size_t kSmallSize = kInlinedCapacity / 2; constexpr size_t kBatchSize = 100; template using InlVec = absl::InlinedVector; struct TrivialType { size_t val; }; class NontrivialType { public: ABSL_ATTRIBUTE_NOINLINE NontrivialType() : val_() { benchmark::DoNotOptimize(*this); } ABSL_ATTRIBUTE_NOINLINE NontrivialType(const NontrivialType& other) : val_(other.val_) { benchmark::DoNotOptimize(*this); } ABSL_ATTRIBUTE_NOINLINE NontrivialType& operator=( const NontrivialType& other) { val_ = other.val_; benchmark::DoNotOptimize(*this); return *this; } ABSL_ATTRIBUTE_NOINLINE ~NontrivialType() noexcept { benchmark::DoNotOptimize(*this); } private: size_t val_; }; template void BatchedBenchmark(benchmark::State& state, PrepareVecFn prepare_vec, TestVecFn test_vec) { std::array, kBatchSize> vector_batch{}; while (state.KeepRunningBatch(kBatchSize)) { // Prepare batch state.PauseTiming(); for (auto& vec : vector_batch) { prepare_vec(&vec); } benchmark::DoNotOptimize(vector_batch); state.ResumeTiming(); // Test batch for (auto& vec : vector_batch) { test_vec(&vec); } } } template void BM_Clear(benchmark::State& state) { BatchedBenchmark( state, /* prepare_vec = */ [](InlVec* vec) { vec->resize(FromSize); }, /* test_vec = */ [](InlVec* vec) { vec->clear(); }); } BENCHMARK_TEMPLATE(BM_Clear, TrivialType, kLargeSize); BENCHMARK_TEMPLATE(BM_Clear, TrivialType, kSmallSize); BENCHMARK_TEMPLATE(BM_Clear, NontrivialType, kLargeSize); BENCHMARK_TEMPLATE(BM_Clear, NontrivialType, kSmallSize); } // namespace