// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: inlined_vector.h // ----------------------------------------------------------------------------- // // This header file contains the declaration and definition of an "inlined // vector" which behaves in an equivalent fashion to a `std::vector`, except // that storage for small sequences of the vector are provided inline without // requiring any heap allocation. // // An `absl::InlinedVector` specifies the default capacity `N` as one of // its template parameters. Instances where `size() <= N` hold contained // elements in inline space. Typically `N` is very small so that sequences that // are expected to be short do not require allocations. // // An `absl::InlinedVector` does not usually require a specific allocator. If // the inlined vector grows beyond its initial constraints, it will need to // allocate (as any normal `std::vector` would). This is usually performed with // the default allocator (defined as `std::allocator`). Optionally, a custom // allocator type may be specified as `A` in `absl::InlinedVector`. #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_ #define ABSL_CONTAINER_INLINED_VECTOR_H_ #include #include #include #include #include #include #include #include #include #include #include "absl/algorithm/algorithm.h" #include "absl/base/internal/throw_delegate.h" #include "absl/base/optimization.h" #include "absl/base/port.h" #include "absl/memory/memory.h" namespace absl { // ----------------------------------------------------------------------------- // InlinedVector // ----------------------------------------------------------------------------- // // An `absl::InlinedVector` is designed to be a drop-in replacement for // `std::vector` for use cases where the vector's size is sufficiently small // that it can be inlined. If the inlined vector does grow beyond its estimated // capacity, it will trigger an initial allocation on the heap, and will behave // as a `std:vector`. The API of the `absl::InlinedVector` within this file is // designed to cover the same API footprint as covered by `std::vector`. template > class InlinedVector { static_assert(N > 0, "InlinedVector requires inline capacity greater than 0"); constexpr static typename A::size_type GetInlinedCapacity() { return static_cast(N); } template using IsAtLeastForwardIterator = std::is_convertible< typename std::iterator_traits::iterator_category, std::forward_iterator_tag>; template using EnableIfAtLeastForwardIterator = absl::enable_if_t::value>; template using DisableIfAtLeastForwardIterator = absl::enable_if_t::value>; using rvalue_reference = typename A::value_type&&; public: using allocator_type = A; using value_type = typename allocator_type::value_type; using pointer = typename allocator_type::pointer; using const_pointer = typename allocator_type::const_pointer; using reference = typename allocator_type::reference; using const_reference = typename allocator_type::const_reference; using size_type = typename allocator_type::size_type; using difference_type = typename allocator_type::difference_type; using iterator = pointer; using const_iterator = const_pointer; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; // --------------------------------------------------------------------------- // InlinedVector Constructors and Destructor // --------------------------------------------------------------------------- // Creates an empty inlined vector with a default initialized allocator. InlinedVector() noexcept(noexcept(allocator_type())) : allocator_and_tag_(allocator_type()) {} // Creates an empty inlined vector with a specified allocator. explicit InlinedVector(const allocator_type& alloc) noexcept : allocator_and_tag_(alloc) {} // Creates an inlined vector with `n` copies of `value_type()`. explicit InlinedVector(size_type n, const allocator_type& alloc = allocator_type()) : allocator_and_tag_(alloc) { InitAssign(n); } // Creates an inlined vector with `n` copies of `v`. InlinedVector(size_type n, const_reference v, const allocator_type& alloc = allocator_type()) : allocator_and_tag_(alloc) { InitAssign(n, v); } // Creates an inlined vector of copies of the values in `list`. InlinedVector(std::initializer_list list, const allocator_type& alloc = allocator_type()) : allocator_and_tag_(alloc) { AppendForwardRange(list.begin(), list.end()); } // Creates an inlined vector with elements constructed from the provided // forward iterator range [`first`, `last`). // // NOTE: The `enable_if` prevents ambiguous interpretation between a call to // this constructor with two integral arguments and a call to the above // `InlinedVector(size_type, const_reference)` constructor. template * = nullptr> InlinedVector(ForwardIterator first, ForwardIterator last, const allocator_type& alloc = allocator_type()) : allocator_and_tag_(alloc) { AppendForwardRange(first, last); } // Creates an inlined vector with elements constructed from the provided input // iterator range [`first`, `last`). template * = nullptr> InlinedVector(InputIterator first, InputIterator last, const allocator_type& alloc = allocator_type()) : allocator_and_tag_(alloc) { std::copy(first, last, std::back_inserter(*this)); } // Creates a copy of an `other` inlined vector using `other`'s allocator. InlinedVector(const InlinedVector& other) : InlinedVector(other, other.allocator()) {} // Creates a copy of an `other` inlined vector using a specified allocator. InlinedVector(const InlinedVector& other, const allocator_type& alloc) : allocator_and_tag_(alloc) { reserve(other.size()); if (allocated()) { UninitializedCopy(other.begin(), other.end(), allocated_space()); tag().set_allocated_size(other.size()); } else { UninitializedCopy(other.begin(), other.end(), inlined_space()); tag().set_inline_size(other.size()); } } // Creates an inlined vector by moving in the contents of an `other` inlined // vector without performing any allocations. If `other` contains allocated // memory, the newly-created instance will take ownership of that memory // (leaving `other` itself empty). However, if `other` does not contain any // allocated memory, the new inlined vector will will perform element-wise // move construction of `other`s elements. // // NOTE: since no allocation is performed for the inlined vector in either // case, the `noexcept(...)` specification depends on whether moving the // underlying objects can throw. We assume: // a) Move constructors should only throw due to allocation failure. // b) If `value_type`'s move constructor allocates, it uses the same // allocation function as the `InlinedVector`'s allocator. Thus, the move // constructor is non-throwing if the allocator is non-throwing or // `value_type`'s move constructor is specified as `noexcept`. InlinedVector(InlinedVector&& other) noexcept( absl::allocator_is_nothrow::value || std::is_nothrow_move_constructible::value) : allocator_and_tag_(other.allocator()) { if (other.allocated()) { // We can just steal the underlying buffer from the source. // That leaves the source empty, so we clear its size. init_allocation(other.allocation()); tag().set_allocated_size(other.size()); other.tag() = Tag(); } else { UninitializedCopy( std::make_move_iterator(other.inlined_space()), std::make_move_iterator(other.inlined_space() + other.size()), inlined_space()); tag().set_inline_size(other.size()); } } // Creates an inlined vector by moving in the contents of an `other` inlined // vector, performing allocations with the specified `alloc` allocator. If // `other`'s allocator is not equal to `alloc` and `other` contains allocated // memory, this move constructor will create a new allocation. // // NOTE: since allocation is performed in this case, this constructor can // only be `noexcept` if the specified allocator is also `noexcept`. If this // is the case, or if `other` contains allocated memory, this constructor // performs element-wise move construction of its contents. // // Only in the case where `other`'s allocator is equal to `alloc` and `other` // contains allocated memory will the newly created inlined vector take // ownership of `other`'s allocated memory. InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept( absl::allocator_is_nothrow::value) : allocator_and_tag_(alloc) { if (other.allocated()) { if (alloc == other.allocator()) { // We can just steal the allocation from the source. tag() = other.tag(); init_allocation(other.allocation()); other.tag() = Tag(); } else { // We need to use our own allocator reserve(other.size()); UninitializedCopy(std::make_move_iterator(other.begin()), std::make_move_iterator(other.end()), allocated_space()); tag().set_allocated_size(other.size()); } } else { UninitializedCopy( std::make_move_iterator(other.inlined_space()), std::make_move_iterator(other.inlined_space() + other.size()), inlined_space()); tag().set_inline_size(other.size()); } } ~InlinedVector() { clear(); } // --------------------------------------------------------------------------- // InlinedVector Member Accessors // --------------------------------------------------------------------------- // `InlinedVector::empty()` // // Checks if the inlined vector has no elements. bool empty() const noexcept { return !size(); } // `InlinedVector::size()` // // Returns the number of elements in the inlined vector. size_type size() const noexcept { return tag().size(); } // `InlinedVector::max_size()` // // Returns the maximum number of elements the vector can hold. size_type max_size() const noexcept { // One bit of the size storage is used to indicate whether the inlined // vector is allocated. As a result, the maximum size of the container that // we can express is half of the max for `size_type`. return (std::numeric_limits::max)() / 2; } // `InlinedVector::capacity()` // // Returns the number of elements that can be stored in the inlined vector // without requiring a reallocation of underlying memory. // // NOTE: For most inlined vectors, `capacity()` should equal the template // parameter `N`. For inlined vectors which exceed this capacity, they // will no longer be inlined and `capacity()` will equal its capacity on the // allocated heap. size_type capacity() const noexcept { return allocated() ? allocation().capacity() : GetInlinedCapacity(); } // `InlinedVector::data()` // // Returns a `pointer` to elements of the inlined vector. This pointer can be // used to access and modify the contained elements. // Only results within the range [`0`, `size()`) are defined. pointer data() noexcept { return allocated() ? allocated_space() : inlined_space(); } // Overload of `InlinedVector::data()` to return a `const_pointer` to elements // of the inlined vector. This pointer can be used to access (but not modify) // the contained elements. const_pointer data() const noexcept { return allocated() ? allocated_space() : inlined_space(); } // `InlinedVector::operator[]()` // // Returns a `reference` to the `i`th element of the inlined vector using the // array operator. reference operator[](size_type i) { assert(i < size()); return data()[i]; } // Overload of `InlinedVector::operator[]()` to return a `const_reference` to // the `i`th element of the inlined vector. const_reference operator[](size_type i) const { assert(i < size()); return data()[i]; } // `InlinedVector::at()` // // Returns a `reference` to the `i`th element of the inlined vector. reference at(size_type i) { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange( "`InlinedVector::at(size_type)` failed bounds check"); } return data()[i]; } // Overload of `InlinedVector::at()` to return a `const_reference` to the // `i`th element of the inlined vector. const_reference at(size_type i) const { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange( "`InlinedVector::at(size_type) const` failed bounds check"); } return data()[i]; } // `InlinedVector::front()` // // Returns a `reference` to the first element of the inlined vector. reference front() { assert(!empty()); return at(0); } // Overload of `InlinedVector::front()` returns a `const_reference` to the // first element of the inlined vector. const_reference front() const { assert(!empty()); return at(0); } // `InlinedVector::back()` // // Returns a `reference` to the last element of the inlined vector. reference back() { assert(!empty()); return at(size() - 1); } // Overload of `InlinedVector::back()` to return a `const_reference` to the // last element of the inlined vector. const_reference back() const { assert(!empty()); return at(size() - 1); } // `InlinedVector::begin()` // // Returns an `iterator` to the beginning of the inlined vector. iterator begin() noexcept { return data(); } // Overload of `InlinedVector::begin()` to return a `const_iterator` to // the beginning of the inlined vector. const_iterator begin() const noexcept { return data(); } // `InlinedVector::end()` // // Returns an `iterator` to the end of the inlined vector. iterator end() noexcept { return data() + size(); } // Overload of `InlinedVector::end()` to return a `const_iterator` to the // end of the inlined vector. const_iterator end() const noexcept { return data() + size(); } // `InlinedVector::cbegin()` // // Returns a `const_iterator` to the beginning of the inlined vector. const_iterator cbegin() const noexcept { return begin(); } // `InlinedVector::cend()` // // Returns a `const_iterator` to the end of the inlined vector. const_iterator cend() const noexcept { return end(); } // `InlinedVector::rbegin()` // // Returns a `reverse_iterator` from the end of the inlined vector. reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } // Overload of `InlinedVector::rbegin()` to return a // `const_reverse_iterator` from the end of the inlined vector. const_reverse_iterator rbegin() const noexcept { return const_reverse_iterator(end()); } // `InlinedVector::rend()` // // Returns a `reverse_iterator` from the beginning of the inlined vector. reverse_iterator rend() noexcept { return reverse_iterator(begin()); } // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator` // from the beginning of the inlined vector. const_reverse_iterator rend() const noexcept { return const_reverse_iterator(begin()); } // `InlinedVector::crbegin()` // // Returns a `const_reverse_iterator` from the end of the inlined vector. const_reverse_iterator crbegin() const noexcept { return rbegin(); } // `InlinedVector::crend()` // // Returns a `const_reverse_iterator` from the beginning of the inlined // vector. const_reverse_iterator crend() const noexcept { return rend(); } // `InlinedVector::get_allocator()` // // Returns a copy of the allocator of the inlined vector. allocator_type get_allocator() const { return allocator(); } // --------------------------------------------------------------------------- // InlinedVector Member Mutators // --------------------------------------------------------------------------- // `InlinedVector::operator=()` // // Replaces the contents of the inlined vector with copies of the elements in // the provided `std::initializer_list`. InlinedVector& operator=(std::initializer_list list) { AssignForwardRange(list.begin(), list.end()); return *this; } // Overload of `InlinedVector::operator=()` to replace the contents of the // inlined vector with the contents of `other`. InlinedVector& operator=(const InlinedVector& other) { if (ABSL_PREDICT_FALSE(this == &other)) return *this; // Optimized to avoid reallocation. // Prefer reassignment to copy construction for elements. if (size() < other.size()) { // grow reserve(other.size()); std::copy(other.begin(), other.begin() + size(), begin()); std::copy(other.begin() + size(), other.end(), std::back_inserter(*this)); } else { // maybe shrink erase(begin() + other.size(), end()); std::copy(other.begin(), other.end(), begin()); } return *this; } // Overload of `InlinedVector::operator=()` to replace the contents of the // inlined vector with the contents of `other`. // // NOTE: As a result of calling this overload, `other` may be empty or it's // contents may be left in a moved-from state. InlinedVector& operator=(InlinedVector&& other) { if (ABSL_PREDICT_FALSE(this == &other)) return *this; if (other.allocated()) { clear(); tag().set_allocated_size(other.size()); init_allocation(other.allocation()); other.tag() = Tag(); } else { if (allocated()) clear(); // Both are inlined now. if (size() < other.size()) { auto mid = std::make_move_iterator(other.begin() + size()); std::copy(std::make_move_iterator(other.begin()), mid, begin()); UninitializedCopy(mid, std::make_move_iterator(other.end()), end()); } else { auto new_end = std::copy(std::make_move_iterator(other.begin()), std::make_move_iterator(other.end()), begin()); Destroy(new_end, end()); } tag().set_inline_size(other.size()); } return *this; } // `InlinedVector::assign()` // // Replaces the contents of the inlined vector with `n` copies of `v`. void assign(size_type n, const_reference v) { if (n <= size()) { // Possibly shrink std::fill_n(begin(), n, v); erase(begin() + n, end()); return; } // Grow reserve(n); std::fill_n(begin(), size(), v); if (allocated()) { UninitializedFill(allocated_space() + size(), allocated_space() + n, v); tag().set_allocated_size(n); } else { UninitializedFill(inlined_space() + size(), inlined_space() + n, v); tag().set_inline_size(n); } } // Overload of `InlinedVector::assign()` to replace the contents of the // inlined vector with copies of the values in the provided // `std::initializer_list`. void assign(std::initializer_list list) { AssignForwardRange(list.begin(), list.end()); } // Overload of `InlinedVector::assign()` to replace the contents of the // inlined vector with the forward iterator range [`first`, `last`). template * = nullptr> void assign(ForwardIterator first, ForwardIterator last) { AssignForwardRange(first, last); } // Overload of `InlinedVector::assign()` to replace the contents of the // inlined vector with the input iterator range [`first`, `last`). template * = nullptr> void assign(InputIterator first, InputIterator last) { size_type assign_index = 0; for (; (assign_index < size()) && (first != last); static_cast(++assign_index), static_cast(++first)) { *(data() + assign_index) = *first; } erase(data() + assign_index, data() + size()); std::copy(first, last, std::back_inserter(*this)); } // `InlinedVector::resize()` // // Resizes the inlined vector to contain `n` elements. If `n` is smaller than // the inlined vector's current size, extra elements are destroyed. If `n` is // larger than the initial size, new elements are value-initialized. void resize(size_type n) { size_type s = size(); if (n < s) { erase(begin() + n, end()); return; } reserve(n); assert(capacity() >= n); // Fill new space with elements constructed in-place. if (allocated()) { UninitializedFill(allocated_space() + s, allocated_space() + n); tag().set_allocated_size(n); } else { UninitializedFill(inlined_space() + s, inlined_space() + n); tag().set_inline_size(n); } } // Overload of `InlinedVector::resize()` to resize the inlined vector to // contain `n` elements where, if `n` is larger than `size()`, the new values // will be copy-constructed from `v`. void resize(size_type n, const_reference v) { size_type s = size(); if (n < s) { erase(begin() + n, end()); return; } reserve(n); assert(capacity() >= n); // Fill new space with copies of `v`. if (allocated()) { UninitializedFill(allocated_space() + s, allocated_space() + n, v); tag().set_allocated_size(n); } else { UninitializedFill(inlined_space() + s, inlined_space() + n, v); tag().set_inline_size(n); } } // `InlinedVector::insert()` // // Copies `v` into `pos`, returning an `iterator` pointing to the newly // inserted element. iterator insert(const_iterator pos, const_reference v) { return emplace(pos, v); } // Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning // an iterator pointing to the newly inserted element. iterator insert(const_iterator pos, rvalue_reference v) { return emplace(pos, std::move(v)); } // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies // of `v` starting at `pos`. Returns an `iterator` pointing to the first of // the newly inserted elements. iterator insert(const_iterator pos, size_type n, const_reference v) { return InsertWithCount(pos, n, v); } // Overload of `InlinedVector::insert()` for copying the contents of the // `std::initializer_list` into the vector starting at `pos`. Returns an // `iterator` pointing to the first of the newly inserted elements. iterator insert(const_iterator pos, std::initializer_list list) { return insert(pos, list.begin(), list.end()); } // Overload of `InlinedVector::insert()` for inserting elements constructed // from the forward iterator range [`first`, `last`). Returns an `iterator` // pointing to the first of the newly inserted elements. // // NOTE: The `enable_if` is intended to disambiguate the two three-argument // overloads of `insert()`. template * = nullptr> iterator insert(const_iterator pos, ForwardIterator first, ForwardIterator last) { return InsertWithForwardRange(pos, first, last); } // Overload of `InlinedVector::insert()` for inserting elements constructed // from the input iterator range [`first`, `last`). Returns an `iterator` // pointing to the first of the newly inserted elements. template * = nullptr> iterator insert(const_iterator pos, InputIterator first, InputIterator last) { size_type initial_insert_index = std::distance(cbegin(), pos); for (size_type insert_index = initial_insert_index; first != last; static_cast(++insert_index), static_cast(++first)) { insert(data() + insert_index, *first); } return iterator(data() + initial_insert_index); } // `InlinedVector::emplace()` // // Constructs and inserts an object in the inlined vector at the given `pos`, // returning an `iterator` pointing to the newly emplaced element. template iterator emplace(const_iterator pos, Args&&... args) { assert(pos >= begin()); assert(pos <= end()); if (ABSL_PREDICT_FALSE(pos == end())) { emplace_back(std::forward(args)...); return end() - 1; } T new_t = T(std::forward(args)...); auto range = ShiftRight(pos, 1); if (range.first == range.second) { // constructing into uninitialized memory Construct(range.first, std::move(new_t)); } else { // assigning into moved-from object *range.first = T(std::move(new_t)); } return range.first; } // `InlinedVector::emplace_back()` // // Constructs and appends a new element to the end of the inlined vector, // returning a `reference` to the emplaced element. template reference emplace_back(Args&&... args) { size_type s = size(); if (ABSL_PREDICT_FALSE(s == capacity())) { return GrowAndEmplaceBack(std::forward(args)...); } pointer space; if (allocated()) { tag().set_allocated_size(s + 1); space = allocated_space(); } else { tag().set_inline_size(s + 1); space = inlined_space(); } return Construct(space + s, std::forward(args)...); } // `InlinedVector::push_back()` // // Appends a copy of `v` to the end of the inlined vector. void push_back(const_reference v) { static_cast(emplace_back(v)); } // Overload of `InlinedVector::push_back()` for moving `v` into a newly // appended element. void push_back(rvalue_reference v) { static_cast(emplace_back(std::move(v))); } // `InlinedVector::pop_back()` // // Destroys the element at the end of the inlined vector and shrinks the size // by `1` (unless the inlined vector is empty, in which case this is a no-op). void pop_back() noexcept { assert(!empty()); size_type s = size(); if (allocated()) { Destroy(allocated_space() + s - 1, allocated_space() + s); tag().set_allocated_size(s - 1); } else { Destroy(inlined_space() + s - 1, inlined_space() + s); tag().set_inline_size(s - 1); } } // `InlinedVector::erase()` // // Erases the element at `pos` of the inlined vector, returning an `iterator` // pointing to the first element following the erased element. // // NOTE: May return the end iterator, which is not dereferencable. iterator erase(const_iterator pos) { assert(pos >= begin()); assert(pos < end()); iterator position = const_cast(pos); std::move(position + 1, end(), position); pop_back(); return position; } // Overload of `InlinedVector::erase()` for erasing all elements in the // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing // to the first element following the range erased or the end iterator if `to` // was the end iterator. iterator erase(const_iterator from, const_iterator to) { assert(begin() <= from); assert(from <= to); assert(to <= end()); iterator range_start = const_cast(from); iterator range_end = const_cast(to); size_type s = size(); ptrdiff_t erase_gap = std::distance(range_start, range_end); if (erase_gap > 0) { pointer space; if (allocated()) { space = allocated_space(); tag().set_allocated_size(s - erase_gap); } else { space = inlined_space(); tag().set_inline_size(s - erase_gap); } std::move(range_end, space + s, range_start); Destroy(space + s - erase_gap, space + s); } return range_start; } // `InlinedVector::clear()` // // Destroys all elements in the inlined vector, sets the size of `0` and // deallocates the heap allocation if the inlined vector was allocated. void clear() noexcept { size_type s = size(); if (allocated()) { Destroy(allocated_space(), allocated_space() + s); allocation().Dealloc(allocator()); } else if (s != 0) { // do nothing for empty vectors Destroy(inlined_space(), inlined_space() + s); } tag() = Tag(); } // `InlinedVector::reserve()` // // Enlarges the underlying representation of the inlined vector so it can hold // at least `n` elements. This method does not change `size()` or the actual // contents of the vector. // // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no // effects. Otherwise, `reserve()` will reallocate, performing an n-time // element-wise move of everything contained. void reserve(size_type n) { if (n > capacity()) { // Make room for new elements EnlargeBy(n - size()); } } // `InlinedVector::shrink_to_fit()` // // Reduces memory usage by freeing unused memory. After this call, calls to // `capacity()` will be equal to `(std::max)(GetInlinedCapacity(), size())`. // // If `size() <= GetInlinedCapacity()` and the elements are currently stored // on the heap, they will be moved to the inlined storage and the heap memory // will be deallocated. // // If `size() > GetInlinedCapacity()` and `size() < capacity()` the elements // will be moved to a smaller heap allocation. void shrink_to_fit() { const auto s = size(); if (ABSL_PREDICT_FALSE(!allocated() || s == capacity())) return; if (s <= GetInlinedCapacity()) { // Move the elements to the inlined storage. // We have to do this using a temporary, because `inlined_storage` and // `allocation_storage` are in a union field. auto temp = std::move(*this); assign(std::make_move_iterator(temp.begin()), std::make_move_iterator(temp.end())); return; } // Reallocate storage and move elements. // We can't simply use the same approach as above, because `assign()` would // call into `reserve()` internally and reserve larger capacity than we need Allocation new_allocation(allocator(), s); UninitializedCopy(std::make_move_iterator(allocated_space()), std::make_move_iterator(allocated_space() + s), new_allocation.buffer()); ResetAllocation(new_allocation, s); } // `InlinedVector::swap()` // // Swaps the contents of this inlined vector with the contents of `other`. void swap(InlinedVector& other) { if (ABSL_PREDICT_FALSE(this == &other)) return; SwapImpl(other); } private: template friend auto AbslHashValue(H h, const InlinedVector& v) -> H; // Holds whether the vector is allocated or not in the lowest bit and the size // in the high bits: // `size_ = (size << 1) | is_allocated;` class Tag { public: Tag() : size_(0) {} size_type size() const { return size_ / 2; } void add_size(size_type n) { size_ += n * 2; } void set_inline_size(size_type n) { size_ = n * 2; } void set_allocated_size(size_type n) { size_ = (n * 2) + 1; } bool allocated() const { return size_ % 2; } private: size_type size_; }; // Derives from `allocator_type` to use the empty base class optimization. // If the `allocator_type` is stateless, we can store our instance for free. class AllocatorAndTag : private allocator_type { public: explicit AllocatorAndTag(const allocator_type& a) : allocator_type(a) {} Tag& tag() { return tag_; } const Tag& tag() const { return tag_; } allocator_type& allocator() { return *this; } const allocator_type& allocator() const { return *this; } private: Tag tag_; }; class Allocation { public: Allocation(allocator_type& a, size_type capacity) : capacity_(capacity), buffer_(Create(a, capacity)) {} void Dealloc(allocator_type& a) { std::allocator_traits::deallocate(a, buffer_, capacity_); } size_type capacity() const { return capacity_; } const_pointer buffer() const { return buffer_; } pointer buffer() { return buffer_; } private: static pointer Create(allocator_type& a, size_type n) { return std::allocator_traits::allocate(a, n); } size_type capacity_; pointer buffer_; }; const Tag& tag() const { return allocator_and_tag_.tag(); } Tag& tag() { return allocator_and_tag_.tag(); } Allocation& allocation() { return reinterpret_cast(rep_.allocation_storage.allocation); } const Allocation& allocation() const { return reinterpret_cast( rep_.allocation_storage.allocation); } void init_allocation(const Allocation& allocation) { new (&rep_.allocation_storage.allocation) Allocation(allocation); } // TODO(absl-team): investigate whether the reinterpret_cast is appropriate. pointer inlined_space() { return reinterpret_cast( std::addressof(rep_.inlined_storage.inlined[0])); } const_pointer inlined_space() const { return reinterpret_cast( std::addressof(rep_.inlined_storage.inlined[0])); } pointer allocated_space() { return allocation().buffer(); } const_pointer allocated_space() const { return allocation().buffer(); } const allocator_type& allocator() const { return allocator_and_tag_.allocator(); } allocator_type& allocator() { return allocator_and_tag_.allocator(); } bool allocated() const { return tag().allocated(); } void ResetAllocation(Allocation new_allocation, size_type new_size) { if (allocated()) { Destroy(allocated_space(), allocated_space() + size()); assert(begin() == allocated_space()); allocation().Dealloc(allocator()); allocation() = new_allocation; } else { Destroy(inlined_space(), inlined_space() + size()); init_allocation(new_allocation); // bug: only init once } tag().set_allocated_size(new_size); } template reference Construct(pointer p, Args&&... args) { std::allocator_traits::construct( allocator(), p, std::forward(args)...); return *p; } template void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) { for (; src != src_last; ++dst, ++src) Construct(dst, *src); } template void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) { for (; dst != dst_last; ++dst) Construct(dst, args...); } // Destroy [`from`, `to`) in place. void Destroy(pointer from, pointer to) { for (pointer cur = from; cur != to; ++cur) { std::allocator_traits::destroy(allocator(), cur); } #if !defined(NDEBUG) // Overwrite unused memory with `0xab` so we can catch uninitialized usage. // Cast to `void*` to tell the compiler that we don't care that we might be // scribbling on a vtable pointer. if (from != to) { auto len = sizeof(value_type) * std::distance(from, to); std::memset(reinterpret_cast(from), 0xab, len); } #endif // !defined(NDEBUG) } // Enlarge the underlying representation so we can store `size_ + delta` elems // in allocated space. The size is not changed, and any newly added memory is // not initialized. void EnlargeBy(size_type delta) { const size_type s = size(); assert(s <= capacity()); size_type target = (std::max)(GetInlinedCapacity(), s + delta); // Compute new capacity by repeatedly doubling current capacity // TODO(psrc): Check and avoid overflow? size_type new_capacity = capacity(); while (new_capacity < target) { new_capacity <<= 1; } Allocation new_allocation(allocator(), new_capacity); UninitializedCopy(std::make_move_iterator(data()), std::make_move_iterator(data() + s), new_allocation.buffer()); ResetAllocation(new_allocation, s); } // Shift all elements from `position` to `end()` by `n` places to the right. // If the vector needs to be enlarged, memory will be allocated. // Returns `iterator`s pointing to the start of the previously-initialized // portion and the start of the uninitialized portion of the created gap. // The number of initialized spots is `pair.second - pair.first`. The number // of raw spots is `n - (pair.second - pair.first)`. // // Updates the size of the InlinedVector internally. std::pair ShiftRight(const_iterator position, size_type n) { iterator start_used = const_cast(position); iterator start_raw = const_cast(position); size_type s = size(); size_type required_size = s + n; if (required_size > capacity()) { // Compute new capacity by repeatedly doubling current capacity size_type new_capacity = capacity(); while (new_capacity < required_size) { new_capacity <<= 1; } // Move everyone into the new allocation, leaving a gap of `n` for the // requested shift. Allocation new_allocation(allocator(), new_capacity); size_type index = position - begin(); UninitializedCopy(std::make_move_iterator(data()), std::make_move_iterator(data() + index), new_allocation.buffer()); UninitializedCopy(std::make_move_iterator(data() + index), std::make_move_iterator(data() + s), new_allocation.buffer() + index + n); ResetAllocation(new_allocation, s); // New allocation means our iterator is invalid, so we'll recalculate. // Since the entire gap is in new space, there's no used space to reuse. start_raw = begin() + index; start_used = start_raw; } else { // If we had enough space, it's a two-part move. Elements going into // previously-unoccupied space need an `UninitializedCopy()`. Elements // going into a previously-occupied space are just a `std::move()`. iterator pos = const_cast(position); iterator raw_space = end(); size_type slots_in_used_space = raw_space - pos; size_type new_elements_in_used_space = (std::min)(n, slots_in_used_space); size_type new_elements_in_raw_space = n - new_elements_in_used_space; size_type old_elements_in_used_space = slots_in_used_space - new_elements_in_used_space; UninitializedCopy( std::make_move_iterator(pos + old_elements_in_used_space), std::make_move_iterator(raw_space), raw_space + new_elements_in_raw_space); std::move_backward(pos, pos + old_elements_in_used_space, raw_space); // If the gap is entirely in raw space, the used space starts where the // raw space starts, leaving no elements in used space. If the gap is // entirely in used space, the raw space starts at the end of the gap, // leaving all elements accounted for within the used space. start_used = pos; start_raw = pos + new_elements_in_used_space; } tag().add_size(n); return std::make_pair(start_used, start_raw); } template reference GrowAndEmplaceBack(Args&&... args) { assert(size() == capacity()); const size_type s = size(); Allocation new_allocation(allocator(), 2 * capacity()); reference new_element = Construct(new_allocation.buffer() + s, std::forward(args)...); UninitializedCopy(std::make_move_iterator(data()), std::make_move_iterator(data() + s), new_allocation.buffer()); ResetAllocation(new_allocation, s + 1); return new_element; } void InitAssign(size_type n) { if (n > GetInlinedCapacity()) { Allocation new_allocation(allocator(), n); init_allocation(new_allocation); UninitializedFill(allocated_space(), allocated_space() + n); tag().set_allocated_size(n); } else { UninitializedFill(inlined_space(), inlined_space() + n); tag().set_inline_size(n); } } void InitAssign(size_type n, const_reference v) { if (n > GetInlinedCapacity()) { Allocation new_allocation(allocator(), n); init_allocation(new_allocation); UninitializedFill(allocated_space(), allocated_space() + n, v); tag().set_allocated_size(n); } else { UninitializedFill(inlined_space(), inlined_space() + n, v); tag().set_inline_size(n); } } template void AssignForwardRange(ForwardIt first, ForwardIt last) { static_assert(IsAtLeastForwardIterator::value, ""); auto length = std::distance(first, last); // Prefer reassignment to copy construction for elements. if (static_cast(length) <= size()) { erase(std::copy(first, last, begin()), end()); return; } reserve(length); iterator out = begin(); for (; out != end(); ++first, ++out) *out = *first; if (allocated()) { UninitializedCopy(first, last, out); tag().set_allocated_size(length); } else { UninitializedCopy(first, last, out); tag().set_inline_size(length); } } template void AppendForwardRange(ForwardIt first, ForwardIt last) { static_assert(IsAtLeastForwardIterator::value, ""); auto length = std::distance(first, last); reserve(size() + length); if (allocated()) { UninitializedCopy(first, last, allocated_space() + size()); tag().set_allocated_size(size() + length); } else { UninitializedCopy(first, last, inlined_space() + size()); tag().set_inline_size(size() + length); } } iterator InsertWithCount(const_iterator position, size_type n, const_reference v) { assert(position >= begin() && position <= end()); if (ABSL_PREDICT_FALSE(n == 0)) return const_cast(position); value_type copy = v; std::pair it_pair = ShiftRight(position, n); std::fill(it_pair.first, it_pair.second, copy); UninitializedFill(it_pair.second, it_pair.first + n, copy); return it_pair.first; } template iterator InsertWithForwardRange(const_iterator position, ForwardIt first, ForwardIt last) { static_assert(IsAtLeastForwardIterator::value, ""); assert(position >= begin() && position <= end()); if (ABSL_PREDICT_FALSE(first == last)) return const_cast(position); auto n = std::distance(first, last); std::pair it_pair = ShiftRight(position, n); size_type used_spots = it_pair.second - it_pair.first; auto open_spot = std::next(first, used_spots); std::copy(first, open_spot, it_pair.first); UninitializedCopy(open_spot, last, it_pair.second); return it_pair.first; } void SwapImpl(InlinedVector& other) { using std::swap; // Augment ADL with `std::swap`. if (allocated() && other.allocated()) { // Both out of line, so just swap the tag, allocation, and allocator. swap(tag(), other.tag()); swap(allocation(), other.allocation()); swap(allocator(), other.allocator()); return; } if (!allocated() && !other.allocated()) { // Both inlined: swap up to smaller size, then move remaining elements. InlinedVector* a = this; InlinedVector* b = &other; if (size() < other.size()) { swap(a, b); } const size_type a_size = a->size(); const size_type b_size = b->size(); assert(a_size >= b_size); // `a` is larger. Swap the elements up to the smaller array size. std::swap_ranges(a->inlined_space(), a->inlined_space() + b_size, b->inlined_space()); // Move the remaining elements: // [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b` b->UninitializedCopy(a->inlined_space() + b_size, a->inlined_space() + a_size, b->inlined_space() + b_size); a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size); swap(a->tag(), b->tag()); swap(a->allocator(), b->allocator()); assert(b->size() == a_size); assert(a->size() == b_size); return; } // One is out of line, one is inline. // We first move the elements from the inlined vector into the // inlined space in the other vector. We then put the other vector's // pointer/capacity into the originally inlined vector and swap // the tags. InlinedVector* a = this; InlinedVector* b = &other; if (a->allocated()) { swap(a, b); } assert(!a->allocated()); assert(b->allocated()); const size_type a_size = a->size(); const size_type b_size = b->size(); // In an optimized build, `b_size` would be unused. static_cast(b_size); // Made Local copies of `size()`, don't need `tag()` accurate anymore swap(a->tag(), b->tag()); // Copy `b_allocation` out before `b`'s union gets clobbered by // `inline_space` Allocation b_allocation = b->allocation(); b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size, b->inlined_space()); a->Destroy(a->inlined_space(), a->inlined_space() + a_size); a->allocation() = b_allocation; if (a->allocator() != b->allocator()) { swap(a->allocator(), b->allocator()); } assert(b->size() == a_size); assert(a->size() == b_size); } // Stores either the inlined or allocated representation union Rep { using ValueTypeBuffer = absl::aligned_storage_t; using AllocationBuffer = absl::aligned_storage_t; // Structs wrap the buffers to perform indirection that solves a bizarre // compilation error on Visual Studio (all known versions). struct InlinedRep { ValueTypeBuffer inlined[N]; }; struct AllocatedRep { AllocationBuffer allocation; }; InlinedRep inlined_storage; AllocatedRep allocation_storage; }; AllocatorAndTag allocator_and_tag_; Rep rep_; }; // ----------------------------------------------------------------------------- // InlinedVector Non-Member Functions // ----------------------------------------------------------------------------- // `swap()` // // Swaps the contents of two inlined vectors. This convenience function // simply calls `InlinedVector::swap()`. template auto swap(InlinedVector& a, InlinedVector& b) noexcept(noexcept(a.swap(b))) -> void { a.swap(b); } // `operator==()` // // Tests the equivalency of the contents of two inlined vectors. template auto operator==(const InlinedVector& a, const InlinedVector& b) -> bool { return absl::equal(a.begin(), a.end(), b.begin(), b.end()); } // `operator!=()` // // Tests the inequality of the contents of two inlined vectors. template auto operator!=(const InlinedVector& a, const InlinedVector& b) -> bool { return !(a == b); } // `operator<()` // // Tests whether the contents of one inlined vector are less than the contents // of another through a lexicographical comparison operation. template auto operator<(const InlinedVector& a, const InlinedVector& b) -> bool { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); } // `operator>()` // // Tests whether the contents of one inlined vector are greater than the // contents of another through a lexicographical comparison operation. template auto operator>(const InlinedVector& a, const InlinedVector& b) -> bool { return b < a; } // `operator<=()` // // Tests whether the contents of one inlined vector are less than or equal to // the contents of another through a lexicographical comparison operation. template auto operator<=(const InlinedVector& a, const InlinedVector& b) -> bool { return !(b < a); } // `operator>=()` // // Tests whether the contents of one inlined vector are greater than or equal to // the contents of another through a lexicographical comparison operation. template auto operator>=(const InlinedVector& a, const InlinedVector& b) -> bool { return !(a < b); } // AbslHashValue() // // Provides `absl::Hash` support for inlined vectors. You do not normally call // this function directly. template auto AbslHashValue(H h, const InlinedVector& v) -> H { auto p = v.data(); auto n = v.size(); return H::combine(H::combine_contiguous(std::move(h), p, n), n); } } // namespace absl // ----------------------------------------------------------------------------- // Implementation of InlinedVector // // Do not depend on any below implementation details! // ----------------------------------------------------------------------------- #endif // ABSL_CONTAINER_INLINED_VECTOR_H_