// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: flat_hash_set.h // ----------------------------------------------------------------------------- // // An `absl::flat_hash_set<T>` is an unordered associative container designed to // be a more efficient replacement for `std::unordered_set`. Like // `unordered_set`, search, insertion, and deletion of set elements can be done // as an `O(1)` operation. However, `flat_hash_set` (and other unordered // associative containers known as the collection of Abseil "Swiss tables") // contain other optimizations that result in both memory and computation // advantages. // // In most cases, your default choice for a hash set should be a set of type // `flat_hash_set`. #ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_ #define ABSL_CONTAINER_FLAT_HASH_SET_H_ #include <type_traits> #include <utility> #include "absl/algorithm/container.h" #include "absl/base/macros.h" #include "absl/container/internal/container_memory.h" #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export #include "absl/memory/memory.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { template <typename T> struct FlatHashSetPolicy; } // namespace container_internal // ----------------------------------------------------------------------------- // absl::flat_hash_set // ----------------------------------------------------------------------------- // // An `absl::flat_hash_set<T>` is an unordered associative container which has // been optimized for both speed and memory footprint in most common use cases. // Its interface is similar to that of `std::unordered_set<T>` with the // following notable differences: // // * Requires keys that are CopyConstructible // * Supports heterogeneous lookup, through `find()` and `insert()`, provided // that the set is provided a compatible heterogeneous hashing function and // equality operator. // * Invalidates any references and pointers to elements within the table after // `rehash()`. // * Contains a `capacity()` member function indicating the number of element // slots (open, deleted, and empty) within the hash set. // * Returns `void` from the `erase(iterator)` overload. // // By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All // fundamental and Abseil types that support the `absl::Hash` framework have a // compatible equality operator for comparing insertions into `flat_hash_set`. // If your type is not yet supported by the `absl::Hash` framework, see // absl/hash/hash.h for information on extending Abseil hashing to user-defined // types. // // Using `absl::flat_hash_set` at interface boundaries in dynamically loaded // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may // be randomized across dynamically loaded libraries. // // NOTE: A `flat_hash_set` stores its keys directly inside its implementation // array to avoid memory indirection. Because a `flat_hash_set` is designed to // move data when rehashed, set keys will not retain pointer stability. If you // require pointer stability, consider using // `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and // you require pointer stability, consider `absl::node_hash_set` instead. // // Example: // // // Create a flat hash set of three strings // absl::flat_hash_set<std::string> ducks = // {"huey", "dewey", "louie"}; // // // Insert a new element into the flat hash set // ducks.insert("donald"); // // // Force a rehash of the flat hash set // ducks.rehash(0); // // // See if "dewey" is present // if (ducks.contains("dewey")) { // std::cout << "We found dewey!" << std::endl; // } template <class T, class Hash = absl::container_internal::hash_default_hash<T>, class Eq = absl::container_internal::hash_default_eq<T>, class Allocator = std::allocator<T>> class flat_hash_set : public absl::container_internal::raw_hash_set< absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> { using Base = typename flat_hash_set::raw_hash_set; public: // Constructors and Assignment Operators // // A flat_hash_set supports the same overload set as `std::unordered_set` // for construction and assignment: // // * Default constructor // // // No allocation for the table's elements is made. // absl::flat_hash_set<std::string> set1; // // * Initializer List constructor // // absl::flat_hash_set<std::string> set2 = // {{"huey"}, {"dewey"}, {"louie"},}; // // * Copy constructor // // absl::flat_hash_set<std::string> set3(set2); // // * Copy assignment operator // // // Hash functor and Comparator are copied as well // absl::flat_hash_set<std::string> set4; // set4 = set3; // // * Move constructor // // // Move is guaranteed efficient // absl::flat_hash_set<std::string> set5(std::move(set4)); // // * Move assignment operator // // // May be efficient if allocators are compatible // absl::flat_hash_set<std::string> set6; // set6 = std::move(set5); // // * Range constructor // // std::vector<std::string> v = {"a", "b"}; // absl::flat_hash_set<std::string> set7(v.begin(), v.end()); flat_hash_set() {} using Base::Base; // flat_hash_set::begin() // // Returns an iterator to the beginning of the `flat_hash_set`. using Base::begin; // flat_hash_set::cbegin() // // Returns a const iterator to the beginning of the `flat_hash_set`. using Base::cbegin; // flat_hash_set::cend() // // Returns a const iterator to the end of the `flat_hash_set`. using Base::cend; // flat_hash_set::end() // // Returns an iterator to the end of the `flat_hash_set`. using Base::end; // flat_hash_set::capacity() // // Returns the number of element slots (assigned, deleted, and empty) // available within the `flat_hash_set`. // // NOTE: this member function is particular to `absl::flat_hash_set` and is // not provided in the `std::unordered_set` API. using Base::capacity; // flat_hash_set::empty() // // Returns whether or not the `flat_hash_set` is empty. using Base::empty; // flat_hash_set::max_size() // // Returns the largest theoretical possible number of elements within a // `flat_hash_set` under current memory constraints. This value can be thought // of the largest value of `std::distance(begin(), end())` for a // `flat_hash_set<T>`. using Base::max_size; // flat_hash_set::size() // // Returns the number of elements currently within the `flat_hash_set`. using Base::size; // flat_hash_set::clear() // // Removes all elements from the `flat_hash_set`. Invalidates any references, // pointers, or iterators referring to contained elements. // // NOTE: this operation may shrink the underlying buffer. To avoid shrinking // the underlying buffer call `erase(begin(), end())`. using Base::clear; // flat_hash_set::erase() // // Erases elements within the `flat_hash_set`. Erasing does not trigger a // rehash. Overloads are listed below. // // void erase(const_iterator pos): // // Erases the element at `position` of the `flat_hash_set`, returning // `void`. // // NOTE: returning `void` in this case is different than that of STL // containers in general and `std::unordered_set` in particular (which // return an iterator to the element following the erased element). If that // iterator is needed, simply post increment the iterator: // // set.erase(it++); // // iterator erase(const_iterator first, const_iterator last): // // Erases the elements in the open interval [`first`, `last`), returning an // iterator pointing to `last`. // // size_type erase(const key_type& key): // // Erases the element with the matching key, if it exists, returning the // number of elements erased (0 or 1). using Base::erase; // flat_hash_set::insert() // // Inserts an element of the specified value into the `flat_hash_set`, // returning an iterator pointing to the newly inserted element, provided that // an element with the given key does not already exist. If rehashing occurs // due to the insertion, all iterators are invalidated. Overloads are listed // below. // // std::pair<iterator,bool> insert(const T& value): // // Inserts a value into the `flat_hash_set`. Returns a pair consisting of an // iterator to the inserted element (or to the element that prevented the // insertion) and a bool denoting whether the insertion took place. // // std::pair<iterator,bool> insert(T&& value): // // Inserts a moveable value into the `flat_hash_set`. Returns a pair // consisting of an iterator to the inserted element (or to the element that // prevented the insertion) and a bool denoting whether the insertion took // place. // // iterator insert(const_iterator hint, const T& value): // iterator insert(const_iterator hint, T&& value): // // Inserts a value, using the position of `hint` as a non-binding suggestion // for where to begin the insertion search. Returns an iterator to the // inserted element, or to the existing element that prevented the // insertion. // // void insert(InputIterator first, InputIterator last): // // Inserts a range of values [`first`, `last`). // // NOTE: Although the STL does not specify which element may be inserted if // multiple keys compare equivalently, for `flat_hash_set` we guarantee the // first match is inserted. // // void insert(std::initializer_list<T> ilist): // // Inserts the elements within the initializer list `ilist`. // // NOTE: Although the STL does not specify which element may be inserted if // multiple keys compare equivalently within the initializer list, for // `flat_hash_set` we guarantee the first match is inserted. using Base::insert; // flat_hash_set::emplace() // // Inserts an element of the specified value by constructing it in-place // within the `flat_hash_set`, provided that no element with the given key // already exists. // // The element may be constructed even if there already is an element with the // key in the container, in which case the newly constructed element will be // destroyed immediately. // // If rehashing occurs due to the insertion, all iterators are invalidated. using Base::emplace; // flat_hash_set::emplace_hint() // // Inserts an element of the specified value by constructing it in-place // within the `flat_hash_set`, using the position of `hint` as a non-binding // suggestion for where to begin the insertion search, and only inserts // provided that no element with the given key already exists. // // The element may be constructed even if there already is an element with the // key in the container, in which case the newly constructed element will be // destroyed immediately. // // If rehashing occurs due to the insertion, all iterators are invalidated. using Base::emplace_hint; // flat_hash_set::extract() // // Extracts the indicated element, erasing it in the process, and returns it // as a C++17-compatible node handle. Overloads are listed below. // // node_type extract(const_iterator position): // // Extracts the element at the indicated position and returns a node handle // owning that extracted data. // // node_type extract(const key_type& x): // // Extracts the element with the key matching the passed key value and // returns a node handle owning that extracted data. If the `flat_hash_set` // does not contain an element with a matching key, this function returns an // empty node handle. using Base::extract; // flat_hash_set::merge() // // Extracts elements from a given `source` flat hash set into this // `flat_hash_set`. If the destination `flat_hash_set` already contains an // element with an equivalent key, that element is not extracted. using Base::merge; // flat_hash_set::swap(flat_hash_set& other) // // Exchanges the contents of this `flat_hash_set` with those of the `other` // flat hash set, avoiding invocation of any move, copy, or swap operations on // individual elements. // // All iterators and references on the `flat_hash_set` remain valid, excepting // for the past-the-end iterator, which is invalidated. // // `swap()` requires that the flat hash set's hashing and key equivalence // functions be Swappable, and are exchaged using unqualified calls to // non-member `swap()`. If the set's allocator has // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value` // set to `true`, the allocators are also exchanged using an unqualified call // to non-member `swap()`; otherwise, the allocators are not swapped. using Base::swap; // flat_hash_set::rehash(count) // // Rehashes the `flat_hash_set`, setting the number of slots to be at least // the passed value. If the new number of slots increases the load factor more // than the current maximum load factor // (`count` < `size()` / `max_load_factor()`), then the new number of slots // will be at least `size()` / `max_load_factor()`. // // To force a rehash, pass rehash(0). // // NOTE: unlike behavior in `std::unordered_set`, references are also // invalidated upon a `rehash()`. using Base::rehash; // flat_hash_set::reserve(count) // // Sets the number of slots in the `flat_hash_set` to the number needed to // accommodate at least `count` total elements without exceeding the current // maximum load factor, and may rehash the container if needed. using Base::reserve; // flat_hash_set::contains() // // Determines whether an element comparing equal to the given `key` exists // within the `flat_hash_set`, returning `true` if so or `false` otherwise. using Base::contains; // flat_hash_set::count(const Key& key) const // // Returns the number of elements comparing equal to the given `key` within // the `flat_hash_set`. note that this function will return either `1` or `0` // since duplicate elements are not allowed within a `flat_hash_set`. using Base::count; // flat_hash_set::equal_range() // // Returns a closed range [first, last], defined by a `std::pair` of two // iterators, containing all elements with the passed key in the // `flat_hash_set`. using Base::equal_range; // flat_hash_set::find() // // Finds an element with the passed `key` within the `flat_hash_set`. using Base::find; // flat_hash_set::bucket_count() // // Returns the number of "buckets" within the `flat_hash_set`. Note that // because a flat hash set contains all elements within its internal storage, // this value simply equals the current capacity of the `flat_hash_set`. using Base::bucket_count; // flat_hash_set::load_factor() // // Returns the current load factor of the `flat_hash_set` (the average number // of slots occupied with a value within the hash set). using Base::load_factor; // flat_hash_set::max_load_factor() // // Manages the maximum load factor of the `flat_hash_set`. Overloads are // listed below. // // float flat_hash_set::max_load_factor() // // Returns the current maximum load factor of the `flat_hash_set`. // // void flat_hash_set::max_load_factor(float ml) // // Sets the maximum load factor of the `flat_hash_set` to the passed value. // // NOTE: This overload is provided only for API compatibility with the STL; // `flat_hash_set` will ignore any set load factor and manage its rehashing // internally as an implementation detail. using Base::max_load_factor; // flat_hash_set::get_allocator() // // Returns the allocator function associated with this `flat_hash_set`. using Base::get_allocator; // flat_hash_set::hash_function() // // Returns the hashing function used to hash the keys within this // `flat_hash_set`. using Base::hash_function; // flat_hash_set::key_eq() // // Returns the function used for comparing keys equality. using Base::key_eq; }; // erase_if(flat_hash_set<>, Pred) // // Erases all elements that satisfy the predicate `pred` from the container `c`. // Returns the number of erased elements. template <typename T, typename H, typename E, typename A, typename Predicate> typename flat_hash_set<T, H, E, A>::size_type erase_if( flat_hash_set<T, H, E, A>& c, Predicate pred) { return container_internal::EraseIf(pred, &c); } namespace container_internal { template <class T> struct FlatHashSetPolicy { using slot_type = T; using key_type = T; using init_type = T; using constant_iterators = std::true_type; template <class Allocator, class... Args> static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { absl::allocator_traits<Allocator>::construct(*alloc, slot, std::forward<Args>(args)...); } template <class Allocator> static void destroy(Allocator* alloc, slot_type* slot) { absl::allocator_traits<Allocator>::destroy(*alloc, slot); } template <class Allocator> static void transfer(Allocator* alloc, slot_type* new_slot, slot_type* old_slot) { construct(alloc, new_slot, std::move(*old_slot)); destroy(alloc, old_slot); } static T& element(slot_type* slot) { return *slot; } template <class F, class... Args> static decltype(absl::container_internal::DecomposeValue( std::declval<F>(), std::declval<Args>()...)) apply(F&& f, Args&&... args) { return absl::container_internal::DecomposeValue( std::forward<F>(f), std::forward<Args>(args)...); } static size_t space_used(const T*) { return 0; } }; } // namespace container_internal namespace container_algorithm_internal { // Specialization of trait in absl/algorithm/container.h template <class Key, class Hash, class KeyEqual, class Allocator> struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>> : std::true_type {}; } // namespace container_algorithm_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_CONTAINER_FLAT_HASH_SET_H_