// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: fixed_array.h // ----------------------------------------------------------------------------- // // A `FixedArray` represents a non-resizable array of `T` where the length of // the array can be determined at run-time. It is a good replacement for // non-standard and deprecated uses of `alloca()` and variable length arrays // within the GCC extension. (See // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). // // `FixedArray` allocates small arrays inline, keeping performance fast by // avoiding heap operations. It also helps reduce the chances of // accidentally overflowing your stack if large input is passed to // your function. #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_ #define ABSL_CONTAINER_FIXED_ARRAY_H_ #include #include #include #include #include #include #include #include #include #include #include "absl/algorithm/algorithm.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/internal/throw_delegate.h" #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/base/port.h" #include "absl/memory/memory.h" namespace absl { inline namespace lts_2018_06_20 { constexpr static auto kFixedArrayUseDefault = static_cast(-1); // ----------------------------------------------------------------------------- // FixedArray // ----------------------------------------------------------------------------- // // A `FixedArray` provides a run-time fixed-size array, allocating small arrays // inline for efficiency and correctness. // // Most users should not specify an `inline_elements` argument and let // `FixedArray<>` automatically determine the number of elements // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the // `FixedArray<>` implementation will inline arrays of // length <= `inline_elements`. // // Note that a `FixedArray` constructed with a `size_type` argument will // default-initialize its values by leaving trivially constructible types // uninitialized (e.g. int, int[4], double), and others default-constructed. // This matches the behavior of c-style arrays and `std::array`, but not // `std::vector`. // // Note that `FixedArray` does not provide a public allocator; if it requires a // heap allocation, it will do so with global `::operator new[]()` and // `::operator delete[]()`, even if T provides class-scope overrides for these // operators. template class FixedArray { static constexpr size_t kInlineBytesDefault = 256; // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, // but this seems to be mostly pedantic. template using EnableIfForwardIterator = typename std::enable_if< std::is_convertible< typename std::iterator_traits::iterator_category, std::forward_iterator_tag>::value, int>::type; public: // For playing nicely with stl: using value_type = T; using iterator = T*; using const_iterator = const T*; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using reference = T&; using const_reference = const T&; using pointer = T*; using const_pointer = const T*; using difference_type = ptrdiff_t; using size_type = size_t; static constexpr size_type inline_elements = inlined == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) : inlined; FixedArray(const FixedArray& other) : rep_(other.begin(), other.end()) {} FixedArray(FixedArray&& other) noexcept( // clang-format off absl::allocator_is_nothrow>::value && // clang-format on std::is_nothrow_move_constructible::value) : rep_(std::make_move_iterator(other.begin()), std::make_move_iterator(other.end())) {} // Creates an array object that can store `n` elements. // Note that trivially constructible elements will be uninitialized. explicit FixedArray(size_type n) : rep_(n) {} // Creates an array initialized with `n` copies of `val`. FixedArray(size_type n, const value_type& val) : rep_(n, val) {} // Creates an array initialized with the elements from the input // range. The array's size will always be `std::distance(first, last)`. // REQUIRES: Iter must be a forward_iterator or better. template = 0> FixedArray(Iter first, Iter last) : rep_(first, last) {} // Creates the array from an initializer_list. FixedArray(std::initializer_list init_list) : FixedArray(init_list.begin(), init_list.end()) {} ~FixedArray() {} // Assignments are deleted because they break the invariant that the size of a // `FixedArray` never changes. void operator=(FixedArray&&) = delete; void operator=(const FixedArray&) = delete; // FixedArray::size() // // Returns the length of the fixed array. size_type size() const { return rep_.size(); } // FixedArray::max_size() // // Returns the largest possible value of `std::distance(begin(), end())` for a // `FixedArray`. This is equivalent to the most possible addressable bytes // over the number of bytes taken by T. constexpr size_type max_size() const { return std::numeric_limits::max() / sizeof(value_type); } // FixedArray::empty() // // Returns whether or not the fixed array is empty. bool empty() const { return size() == 0; } // FixedArray::memsize() // // Returns the memory size of the fixed array in bytes. size_t memsize() const { return size() * sizeof(value_type); } // FixedArray::data() // // Returns a const T* pointer to elements of the `FixedArray`. This pointer // can be used to access (but not modify) the contained elements. const_pointer data() const { return AsValue(rep_.begin()); } // Overload of FixedArray::data() to return a T* pointer to elements of the // fixed array. This pointer can be used to access and modify the contained // elements. pointer data() { return AsValue(rep_.begin()); } // FixedArray::operator[] // // Returns a reference the ith element of the fixed array. // REQUIRES: 0 <= i < size() reference operator[](size_type i) { assert(i < size()); return data()[i]; } // Overload of FixedArray::operator()[] to return a const reference to the // ith element of the fixed array. // REQUIRES: 0 <= i < size() const_reference operator[](size_type i) const { assert(i < size()); return data()[i]; } // FixedArray::at // // Bounds-checked access. Returns a reference to the ith element of the // fiexed array, or throws std::out_of_range reference at(size_type i) { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); } return data()[i]; } // Overload of FixedArray::at() to return a const reference to the ith element // of the fixed array. const_reference at(size_type i) const { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); } return data()[i]; } // FixedArray::front() // // Returns a reference to the first element of the fixed array. reference front() { return *begin(); } // Overload of FixedArray::front() to return a reference to the first element // of a fixed array of const values. const_reference front() const { return *begin(); } // FixedArray::back() // // Returns a reference to the last element of the fixed array. reference back() { return *(end() - 1); } // Overload of FixedArray::back() to return a reference to the last element // of a fixed array of const values. const_reference back() const { return *(end() - 1); } // FixedArray::begin() // // Returns an iterator to the beginning of the fixed array. iterator begin() { return data(); } // Overload of FixedArray::begin() to return a const iterator to the // beginning of the fixed array. const_iterator begin() const { return data(); } // FixedArray::cbegin() // // Returns a const iterator to the beginning of the fixed array. const_iterator cbegin() const { return begin(); } // FixedArray::end() // // Returns an iterator to the end of the fixed array. iterator end() { return data() + size(); } // Overload of FixedArray::end() to return a const iterator to the end of the // fixed array. const_iterator end() const { return data() + size(); } // FixedArray::cend() // // Returns a const iterator to the end of the fixed array. const_iterator cend() const { return end(); } // FixedArray::rbegin() // // Returns a reverse iterator from the end of the fixed array. reverse_iterator rbegin() { return reverse_iterator(end()); } // Overload of FixedArray::rbegin() to return a const reverse iterator from // the end of the fixed array. const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } // FixedArray::crbegin() // // Returns a const reverse iterator from the end of the fixed array. const_reverse_iterator crbegin() const { return rbegin(); } // FixedArray::rend() // // Returns a reverse iterator from the beginning of the fixed array. reverse_iterator rend() { return reverse_iterator(begin()); } // Overload of FixedArray::rend() for returning a const reverse iterator // from the beginning of the fixed array. const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // FixedArray::crend() // // Returns a reverse iterator from the beginning of the fixed array. const_reverse_iterator crend() const { return rend(); } // FixedArray::fill() // // Assigns the given `value` to all elements in the fixed array. void fill(const T& value) { std::fill(begin(), end(), value); } // Relational operators. Equality operators are elementwise using // `operator==`, while order operators order FixedArrays lexicographically. friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { return !(lhs == rhs); } friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { return rhs < lhs; } friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { return !(rhs < lhs); } friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { return !(lhs < rhs); } private: // HolderTraits // // Wrapper to hold elements of type T for the case where T is an array type. // If 'T' is an array type, HolderTraits::type is a struct with a 'T v;'. // Otherwise, HolderTraits::type is simply 'T'. // // Maintainer's Note: The simpler solution would be to simply wrap T in a // struct whether it's an array or not: 'struct Holder { T v; };', but // that causes some paranoid diagnostics to misfire about uses of data(), // believing that 'data()' (aka '&rep_.begin().v') is a pointer to a single // element, rather than the packed array that it really is. // e.g.: // // FixedArray buf(1); // sprintf(buf.data(), "foo"); // // error: call to int __builtin___sprintf_chk(etc...) // will always overflow destination buffer [-Werror] // class HolderTraits { template struct SelectImpl { using type = U; static pointer AsValue(type* p) { return p; } }; // Partial specialization for elements of array type. template struct SelectImpl { struct Holder { U v[N]; }; using type = Holder; static pointer AsValue(type* p) { return &p->v; } }; using Impl = SelectImpl; public: using type = typename Impl::type; static pointer AsValue(type *p) { return Impl::AsValue(p); } // TODO(billydonahue): fix the type aliasing violation // this assertion hints at. static_assert(sizeof(type) == sizeof(value_type), "Holder must be same size as value_type"); }; using Holder = typename HolderTraits::type; static pointer AsValue(Holder *p) { return HolderTraits::AsValue(p); } // InlineSpace // // Allocate some space, not an array of elements of type T, so that we can // skip calling the T constructors and destructors for space we never use. // How many elements should we store inline? // a. If not specified, use a default of kInlineBytesDefault bytes (This is // currently 256 bytes, which seems small enough to not cause stack overflow // or unnecessary stack pollution, while still allowing stack allocation for // reasonably long character arrays). // b. Never use 0 length arrays (not ISO C++) // template class InlineSpace { public: Holder* data() { return reinterpret_cast(space_.data()); } void AnnotateConstruct(size_t n) const { Annotate(n, true); } void AnnotateDestruct(size_t n) const { Annotate(n, false); } private: #ifndef ADDRESS_SANITIZER void Annotate(size_t, bool) const { } #else void Annotate(size_t n, bool creating) const { if (!n) return; const void* bot = &left_redzone_; const void* beg = space_.data(); const void* end = space_.data() + n; const void* top = &right_redzone_ + 1; // args: (beg, end, old_mid, new_mid) if (creating) { ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, top, end); ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, beg, bot); } else { ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, end, top); ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, bot, beg); } } #endif // ADDRESS_SANITIZER using Buffer = typename std::aligned_storage::type; ADDRESS_SANITIZER_REDZONE(left_redzone_); std::array space_; ADDRESS_SANITIZER_REDZONE(right_redzone_); }; // specialization when N = 0. template class InlineSpace<0, U> { public: Holder* data() { return nullptr; } void AnnotateConstruct(size_t) const {} void AnnotateDestruct(size_t) const {} }; // Rep // // A const Rep object holds FixedArray's size and data pointer. // class Rep : public InlineSpace { public: Rep(size_type n, const value_type& val) : n_(n), p_(MakeHolder(n)) { std::uninitialized_fill_n(p_, n, val); } explicit Rep(size_type n) : n_(n), p_(MakeHolder(n)) { // Loop optimizes to nothing for trivially constructible T. for (Holder* p = p_; p != p_ + n; ++p) // Note: no parens: default init only. // Also note '::' to avoid Holder class placement new operator. ::new (static_cast(p)) Holder; } template Rep(Iter first, Iter last) : n_(std::distance(first, last)), p_(MakeHolder(n_)) { std::uninitialized_copy(first, last, AsValue(p_)); } ~Rep() { // Destruction must be in reverse order. // Loop optimizes to nothing for trivially destructible T. for (Holder* p = end(); p != begin();) (--p)->~Holder(); if (IsAllocated(size())) { std::allocator().deallocate(p_, n_); } else { this->AnnotateDestruct(size()); } } Holder* begin() const { return p_; } Holder* end() const { return p_ + n_; } size_type size() const { return n_; } private: Holder* MakeHolder(size_type n) { if (IsAllocated(n)) { return std::allocator().allocate(n); } else { this->AnnotateConstruct(n); return this->data(); } } bool IsAllocated(size_type n) const { return n > inline_elements; } const size_type n_; Holder* const p_; }; // Data members Rep rep_; }; template constexpr size_t FixedArray::inline_elements; template constexpr size_t FixedArray::kInlineBytesDefault; } // inline namespace lts_2018_06_20 } // namespace absl #endif // ABSL_CONTAINER_FIXED_ARRAY_H_