// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: thread_annotations.h // ----------------------------------------------------------------------------- // // This header file contains macro definitions for thread safety annotations // that allow developers to document the locking policies of multi-threaded // code. The annotations can also help program analysis tools to identify // potential thread safety issues. // // // These annotations are implemented using compiler attributes. Using the macros // defined here instead of raw attributes allow for portability and future // compatibility. // // When referring to mutexes in the arguments of the attributes, you should // use variable names or more complex expressions (e.g. my_object->mutex_) // that evaluate to a concrete mutex object whenever possible. If the mutex // you want to refer to is not in scope, you may use a member pointer // (e.g. &MyClass::mutex_) to refer to a mutex in some (unknown) object. // #ifndef ABSL_BASE_THREAD_ANNOTATIONS_H_ #define ABSL_BASE_THREAD_ANNOTATIONS_H_ #if defined(__clang__) #define THREAD_ANNOTATION_ATTRIBUTE__(x) __attribute__((x)) #else #define THREAD_ANNOTATION_ATTRIBUTE__(x) // no-op #endif // GUARDED_BY() // // Documents if a shared field or global variable needs to be protected by a // mutex. GUARDED_BY() allows the user to specify a particular mutex that // should be held when accessing the annotated variable. // // Example: // // Mutex mu; // int p1 GUARDED_BY(mu); #define GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(guarded_by(x)) #define GUARDED_VAR // no-op // PT_GUARDED_BY() // // Documents if the memory location pointed to by a pointer should be guarded // by a mutex when dereferencing the pointer. // // Example: // Mutex mu; // int *p1 PT_GUARDED_BY(mu); // // Note that a pointer variable to a shared memory location could itself be a // shared variable. // // Example: // // // `q`, guarded by `mu1`, points to a shared memory location that is // // guarded by `mu2`: // int *q GUARDED_BY(mu1) PT_GUARDED_BY(mu2); #define PT_GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_by(x)) #define PT_GUARDED_VAR // no-op // ACQUIRED_AFTER() / ACQUIRED_BEFORE() // // Documents the acquisition order between locks that can be held // simultaneously by a thread. For any two locks that need to be annotated // to establish an acquisition order, only one of them needs the annotation. // (i.e. You don't have to annotate both locks with both ACQUIRED_AFTER // and ACQUIRED_BEFORE.) // // Example: // // Mutex m1; // Mutex m2 ACQUIRED_AFTER(m1); #define ACQUIRED_AFTER(...) \ THREAD_ANNOTATION_ATTRIBUTE__(acquired_after(__VA_ARGS__)) #define ACQUIRED_BEFORE(...) \ THREAD_ANNOTATION_ATTRIBUTE__(acquired_before(__VA_ARGS__)) // EXCLUSIVE_LOCKS_REQUIRED() / SHARED_LOCKS_REQUIRED() // // Documents a function that expects a mutex to be held prior to entry. // The mutex is expected to be held both on entry to, and exit from, the // function. // // Example: // // Mutex mu1, mu2; // int a GUARDED_BY(mu1); // int b GUARDED_BY(mu2); // // void foo() EXCLUSIVE_LOCKS_REQUIRED(mu1, mu2) { ... }; #define EXCLUSIVE_LOCKS_REQUIRED(...) \ THREAD_ANNOTATION_ATTRIBUTE__(exclusive_locks_required(__VA_ARGS__)) #define SHARED_LOCKS_REQUIRED(...) \ THREAD_ANNOTATION_ATTRIBUTE__(shared_locks_required(__VA_ARGS__)) // LOCKS_EXCLUDED() // // Documents the locks acquired in the body of the function. These locks // cannot be held when calling this function (as Abseil's `Mutex` locks are // non-reentrant). #define LOCKS_EXCLUDED(...) \ THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__)) // LOCK_RETURNED() // // Documents a function that returns a mutex without acquiring it. For example, // a public getter method that returns a pointer to a private mutex should // be annotated with LOCK_RETURNED. #define LOCK_RETURNED(x) \ THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x)) // LOCKABLE // // Documents if a class/type is a lockable type (such as the `Mutex` class). #define LOCKABLE \ THREAD_ANNOTATION_ATTRIBUTE__(lockable) // SCOPED_LOCKABLE // // Documents if a class does RAII locking (such as the `MutexLock` class). // The constructor should use `LOCK_FUNCTION()` to specify the mutex that is // acquired, and the destructor should use `UNLOCK_FUNCTION()` with no // arguments; the analysis will assume that the destructor unlocks whatever the // constructor locked. #define SCOPED_LOCKABLE \ THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable) // EXCLUSIVE_LOCK_FUNCTION() // // Documents functions that acquire a lock in the body of a function, and do // not release it. #define EXCLUSIVE_LOCK_FUNCTION(...) \ THREAD_ANNOTATION_ATTRIBUTE__(exclusive_lock_function(__VA_ARGS__)) // SHARED_LOCK_FUNCTION() // // Documents functions that acquire a shared (reader) lock in the body of a // function, and do not release it. #define SHARED_LOCK_FUNCTION(...) \ THREAD_ANNOTATION_ATTRIBUTE__(shared_lock_function(__VA_ARGS__)) // UNLOCK_FUNCTION() // // Documents functions that expect a lock to be held on entry to the function, // and release it in the body of the function. #define UNLOCK_FUNCTION(...) \ THREAD_ANNOTATION_ATTRIBUTE__(unlock_function(__VA_ARGS__)) // EXCLUSIVE_TRYLOCK_FUNCTION() / SHARED_TRYLOCK_FUNCTION() // // Documents functions that try to acquire a lock, and return success or failure // (or a non-boolean value that can be interpreted as a boolean). // The first argument should be `true` for functions that return `true` on // success, or `false` for functions that return `false` on success. The second // argument specifies the mutex that is locked on success. If unspecified, this // mutex is assumed to be `this`. #define EXCLUSIVE_TRYLOCK_FUNCTION(...) \ THREAD_ANNOTATION_ATTRIBUTE__(exclusive_trylock_function(__VA_ARGS__)) #define SHARED_TRYLOCK_FUNCTION(...) \ THREAD_ANNOTATION_ATTRIBUTE__(shared_trylock_function(__VA_ARGS__)) // ASSERT_EXCLUSIVE_LOCK() / ASSERT_SHARED_LOCK() // // Documents functions that dynamically check to see if a lock is held, and fail // if it is not held. #define ASSERT_EXCLUSIVE_LOCK(...) \ THREAD_ANNOTATION_ATTRIBUTE__(assert_exclusive_lock(__VA_ARGS__)) #define ASSERT_SHARED_LOCK(...) \ THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_lock(__VA_ARGS__)) // NO_THREAD_SAFETY_ANALYSIS // // Turns off thread safety checking within the body of a particular function. // This annotation is used to mark functions that are known to be correct, but // the locking behavior is more complicated than the analyzer can handle. #define NO_THREAD_SAFETY_ANALYSIS \ THREAD_ANNOTATION_ATTRIBUTE__(no_thread_safety_analysis) //------------------------------------------------------------------------------ // Tool-Supplied Annotations //------------------------------------------------------------------------------ // TS_UNCHECKED should be placed around lock expressions that are not valid // C++ syntax, but which are present for documentation purposes. These // annotations will be ignored by the analysis. #define TS_UNCHECKED(x) "" // TS_FIXME is used to mark lock expressions that are not valid C++ syntax. // It is used by automated tools to mark and disable invalid expressions. // The annotation should either be fixed, or changed to TS_UNCHECKED. #define TS_FIXME(x) "" // Like NO_THREAD_SAFETY_ANALYSIS, this turns off checking within the body of // a particular function. However, this attribute is used to mark functions // that are incorrect and need to be fixed. It is used by automated tools to // avoid breaking the build when the analysis is updated. // Code owners are expected to eventually fix the routine. #define NO_THREAD_SAFETY_ANALYSIS_FIXME NO_THREAD_SAFETY_ANALYSIS // Similar to NO_THREAD_SAFETY_ANALYSIS_FIXME, this macro marks a GUARDED_BY // annotation that needs to be fixed, because it is producing thread safety // warning. It disables the GUARDED_BY. #define GUARDED_BY_FIXME(x) // Disables warnings for a single read operation. This can be used to avoid // warnings when it is known that the read is not actually involved in a race, // but the compiler cannot confirm that. #define TS_UNCHECKED_READ(x) thread_safety_analysis::ts_unchecked_read(x) namespace thread_safety_analysis { // Takes a reference to a guarded data member, and returns an unguarded // reference. template inline const T& ts_unchecked_read(const T& v) NO_THREAD_SAFETY_ANALYSIS { return v; } template inline T& ts_unchecked_read(T& v) NO_THREAD_SAFETY_ANALYSIS { return v; } } // namespace thread_safety_analysis #endif // ABSL_BASE_THREAD_ANNOTATIONS_H_