summaryrefslogtreecommitdiff
path: root/absl/synchronization/mutex.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/synchronization/mutex.h')
-rw-r--r--absl/synchronization/mutex.h1013
1 files changed, 1013 insertions, 0 deletions
diff --git a/absl/synchronization/mutex.h b/absl/synchronization/mutex.h
new file mode 100644
index 00000000..a4178026
--- /dev/null
+++ b/absl/synchronization/mutex.h
@@ -0,0 +1,1013 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// mutex.h
+// -----------------------------------------------------------------------------
+//
+// This header file defines a `Mutex` -- a mutually exclusive lock -- and the
+// most common type of synchronization primitive for facilitating locks on
+// shared resources. A mutex is used to prevent multiple threads from accessing
+// and/or writing to a shared resource concurrently.
+//
+// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
+// features:
+// * Conditional predicates intrinsic to the `Mutex` object
+// * Reader/writer locks, in addition to standard exclusive/writer locks
+// * Deadlock detection and debug support.
+//
+// The following helper classes are also defined within this file:
+//
+// MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
+// write access within the current scope.
+// ReaderMutexLock
+// - An RAII wrapper to acquire and release a `Mutex` for shared/read
+// access within the current scope.
+//
+// WriterMutexLock
+// - Alias for `MutexLock` above, designed for use in distinguishing
+// reader and writer locks within code.
+//
+// In addition to simple mutex locks, this file also defines ways to perform
+// locking under certain conditions.
+//
+// Condition - (Preferred) Used to wait for a particular predicate that
+// depends on state protected by the `Mutex` to become true.
+// CondVar - A lower-level variant of `Condition` that relies on
+// application code to explicitly signal the `CondVar` when
+// a condition has been met.
+//
+// See below for more information on using `Condition` or `CondVar`.
+//
+// Mutexes and mutex behavior can be quite complicated. The information within
+// this header file is limited, as a result. Please consult the Mutex guide for
+// more complete information and examples.
+
+#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
+#define ABSL_SYNCHRONIZATION_MUTEX_H_
+
+#include <atomic>
+#include <cstdint>
+#include <string>
+
+#include "absl/base/internal/identity.h"
+#include "absl/base/internal/low_level_alloc.h"
+#include "absl/base/internal/thread_identity.h"
+#include "absl/base/port.h"
+#include "absl/base/thread_annotations.h"
+#include "absl/synchronization/internal/kernel_timeout.h"
+#include "absl/synchronization/internal/per_thread_sem.h"
+#include "absl/time/time.h"
+
+// Decide if we should use the non-production implementation because
+// the production implementation hasn't been fully ported yet.
+#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
+#error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set
+#elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING)
+#define ABSL_INTERNAL_USE_NONPROD_MUTEX 1
+#include "absl/synchronization/internal/mutex_nonprod.inc"
+#endif
+
+namespace absl {
+
+struct SynchWaitParams;
+class Condition;
+
+// -----------------------------------------------------------------------------
+// Mutex
+// -----------------------------------------------------------------------------
+//
+// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
+// on some resource, typically a variable or data structure with associated
+// invariants. Proper usage of mutexes prevents concurrent access by different
+// threads to the same resource.
+//
+// A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
+// The `Lock()` operation *acquires* a `Mutex` (in a state known as an
+// *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
+// Mutex. During the span of time between the Lock() and Unlock() operations,
+// a mutex is said to be *held*. By design all mutexes support exclusive/write
+// locks, as this is the most common way to use a mutex.
+//
+// The `Mutex` state machine for basic lock/unlock operations is quite simple:
+//
+// | | Lock() | Unlock() |
+// |----------------+------------+----------|
+// | Free | Exclusive | invalid |
+// | Exclusive | blocks | Free |
+//
+// Attempts to `Unlock()` must originate from the thread that performed the
+// corresponding `Lock()` operation.
+//
+// An "invalid" operation is disallowed by the API. The `Mutex` implementation
+// is allowed to do anything on an invalid call, including but not limited to
+// crashing with a useful error message, silently succeeding, or corrupting
+// data structures. In debug mode, the implementation attempts to crash with a
+// useful error message.
+//
+// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
+// is, however, approximately fair over long periods, and starvation-free for
+// threads at the same priority.
+//
+// The lock/unlock primitives are now annotated with lock annotations
+// defined in (base/thread_annotations.h). When writing multi-threaded code,
+// you should use lock annotations whenever possible to document your lock
+// synchronization policy. Besides acting as documentation, these annotations
+// also help compilers or static analysis tools to identify and warn about
+// issues that could potentially result in race conditions and deadlocks.
+//
+// For more information about the lock annotations, please see
+// [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
+// in the Clang documentation.
+//
+// See also `MutexLock`, below, for scoped `Mutex` acquisition.
+
+class LOCKABLE Mutex {
+ public:
+ Mutex();
+ ~Mutex();
+
+ // Mutex::Lock()
+ //
+ // Blocks the calling thread, if necessary, until this `Mutex` is free, and
+ // then acquires it exclusively. (This lock is also known as a "write lock.")
+ void Lock() EXCLUSIVE_LOCK_FUNCTION();
+
+ // Mutex::Unlock()
+ //
+ // Releases this `Mutex` and returns it from the exclusive/write state to the
+ // free state. Caller must hold the `Mutex` exclusively.
+ void Unlock() UNLOCK_FUNCTION();
+
+ // Mutex::TryLock()
+ //
+ // If the mutex can be acquired without blocking, does so exclusively and
+ // returns `true`. Otherwise, returns `false`. Returns `true` with high
+ // probability if the `Mutex` was free.
+ bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true);
+
+ // Mutex::AssertHeld()
+ //
+ // Return immediately if this thread holds the `Mutex` exclusively (in write
+ // mode). Otherwise, may report an error (typically by crashing with a
+ // diagnostic), or may return immediately.
+ void AssertHeld() const ASSERT_EXCLUSIVE_LOCK();
+
+ // ---------------------------------------------------------------------------
+ // Reader-Writer Locking
+ // ---------------------------------------------------------------------------
+
+ // A Mutex can also be used as a starvation-free reader-writer lock.
+ // Neither read-locks nor write-locks are reentrant/recursive to avoid
+ // potential client programming errors.
+ //
+ // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
+ // `Unlock()` and `TryLock()` methods for use within applications mixing
+ // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
+ // manner can make locking behavior clearer when mixing read and write modes.
+ //
+ // Introducing reader locks necessarily complicates the `Mutex` state
+ // machine somewhat. The table below illustrates the allowed state transitions
+ // of a mutex in such cases. Note that ReaderLock() may block even if the lock
+ // is held in shared mode; this occurs when another thread is blocked on a
+ // call to WriterLock().
+ //
+ // ---------------------------------------------------------------------------
+ // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock()
+ // ---------------------------------------------------------------------------
+ // State
+ // ---------------------------------------------------------------------------
+ // Free Exclusive invalid Shared(1) invalid
+ // Shared(1) blocks invalid Shared(2) or blocks Free
+ // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1)
+ // Exclusive blocks Free blocks invalid
+ // ---------------------------------------------------------------------------
+ //
+ // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
+
+ // Mutex::ReaderLock()
+ //
+ // Blocks the calling thread, if necessary, until this `Mutex` is either free,
+ // or in shared mode, and then acquires a share of it. Note that
+ // `ReaderLock()` will block if some other thread has an exclusive/writer lock
+ // on the mutex.
+
+ void ReaderLock() SHARED_LOCK_FUNCTION();
+
+ // Mutex::ReaderUnlock()
+ //
+ // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
+ // the free state if this thread holds the last reader lock on the mutex. Note
+ // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
+ void ReaderUnlock() UNLOCK_FUNCTION();
+
+ // Mutex::ReaderTryLock()
+ //
+ // If the mutex can be acquired without blocking, acquires this mutex for
+ // shared access and returns `true`. Otherwise, returns `false`. Returns
+ // `true` with high probability if the `Mutex` was free or shared.
+ bool ReaderTryLock() SHARED_TRYLOCK_FUNCTION(true);
+
+ // Mutex::AssertReaderHeld()
+ //
+ // Returns immediately if this thread holds the `Mutex` in at least shared
+ // mode (read mode). Otherwise, may report an error (typically by
+ // crashing with a diagnostic), or may return immediately.
+ void AssertReaderHeld() const ASSERT_SHARED_LOCK();
+
+ // Mutex::WriterLock()
+ // Mutex::WriterUnlock()
+ // Mutex::WriterTryLock()
+ //
+ // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
+ //
+ // Use the `Writer*()` versions of these method names when using complementary
+ // `Reader*()` methods to distingish simple exclusive `Mutex` usage (`Lock()`,
+ // etc.) from reader/writer lock usage.
+ void WriterLock() EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
+
+ void WriterUnlock() UNLOCK_FUNCTION() { this->Unlock(); }
+
+ bool WriterTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) {
+ return this->TryLock();
+ }
+
+ // ---------------------------------------------------------------------------
+ // Conditional Critical Regions
+ // ---------------------------------------------------------------------------
+
+ // Conditional usage of a `Mutex` can occur using two distinct paradigms:
+ //
+ // * Use of `Mutex` member functions with `Condition` objects.
+ // * Use of the separate `CondVar` abstraction.
+ //
+ // In general, prefer use of `Condition` and the `Mutex` member functions
+ // listed below over `CondVar`. When there are multiple threads waiting on
+ // distinctly different conditions, however, a battery of `CondVar`s may be
+ // more efficient. This section discusses use of `Condition` objects.
+ //
+ // `Mutex` contains member functions for performing lock operations only under
+ // certain conditions, of class `Condition`. For correctness, the `Condition`
+ // must return a boolean that is a pure function, only of state protected by
+ // the `Mutex`. The condition must be invariant w.r.t. environmental state
+ // such as thread, cpu id, or time, and must be `noexcept`. The condition will
+ // always be invoked with the mutex held in at least read mode, so you should
+ // not block it for long periods or sleep it on a timer.
+ //
+ // Since a condition must not depend directly on the current time, use
+ // `*WithTimeout()` member function variants to make your condition
+ // effectively true after a given duration, or `*WithDeadline()` variants to
+ // make your condition effectively true after a given time.
+ //
+ // The condition function should have no side-effects aside from debug
+ // logging; as a special exception, the function may acquire other mutexes
+ // provided it releases all those that it acquires. (This exception was
+ // required to allow logging.)
+
+ // Mutex::Await()
+ //
+ // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
+ // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
+ // same mode in which it was previously held. If the condition is initially
+ // `true`, `Await()` *may* skip the release/re-acquire step.
+ //
+ // `Await()` requires that this thread holds this `Mutex` in some mode.
+ void Await(const Condition &cond);
+
+ // Mutex::LockWhen()
+ // Mutex::ReaderLockWhen()
+ // Mutex::WriterLockWhen()
+ //
+ // Blocks until simultaneously both `cond` is `true` and this` Mutex` can
+ // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
+ // logically equivalent to `*Lock(); Await();` though they may have different
+ // performance characteristics.
+ void LockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION();
+
+ void ReaderLockWhen(const Condition &cond) SHARED_LOCK_FUNCTION();
+
+ void WriterLockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION() {
+ this->LockWhen(cond);
+ }
+
+ // ---------------------------------------------------------------------------
+ // Mutex Variants with Timeouts/Deadlines
+ // ---------------------------------------------------------------------------
+
+ // Mutex::AwaitWithTimeout()
+ // Mutex::AwaitWithDeadline()
+ //
+ // If `cond` is initially true, do nothing, or act as though `cond` is
+ // initially false.
+ //
+ // If `cond` is initially false, unlock this `Mutex` and block until
+ // simultaneously:
+ // - either `cond` is true or the {timeout has expired, deadline has passed}
+ // and
+ // - this `Mutex` can be reacquired,
+ // then reacquire this `Mutex` in the same mode in which it was previously
+ // held, returning `true` iff `cond` is `true` on return.
+ //
+ // Deadlines in the past are equivalent to an immediate deadline.
+ // Negative timeouts are equivalent to a zero timeout.
+ //
+ // This method requires that this thread holds this `Mutex` in some mode.
+ bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
+
+ bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
+
+ // Mutex::LockWhenWithTimeout()
+ // Mutex::ReaderLockWhenWithTimeout()
+ // Mutex::WriterLockWhenWithTimeout()
+ //
+ // Blocks until simultaneously both:
+ // - either `cond` is `true` or the timeout has expired, and
+ // - this `Mutex` can be acquired,
+ // then atomically acquires this `Mutex`, returning `true` iff `cond` is
+ // `true` on return.
+ //
+ // Negative timeouts are equivalent to a zero timeout.
+ bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
+ EXCLUSIVE_LOCK_FUNCTION();
+ bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
+ SHARED_LOCK_FUNCTION();
+ bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
+ EXCLUSIVE_LOCK_FUNCTION() {
+ return this->LockWhenWithTimeout(cond, timeout);
+ }
+
+ // Mutex::LockWhenWithDeadline()
+ // Mutex::ReaderLockWhenWithDeadline()
+ // Mutex::WriterLockWhenWithDeadline()
+ //
+ // Blocks until simultaneously both:
+ // - either `cond` is `true` or the deadline has been passed, and
+ // - this `Mutex` can be acquired,
+ // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
+ // on return.
+ //
+ // Deadlines in the past are equivalent to an immediate deadline.
+ bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
+ EXCLUSIVE_LOCK_FUNCTION();
+ bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
+ SHARED_LOCK_FUNCTION();
+ bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
+ EXCLUSIVE_LOCK_FUNCTION() {
+ return this->LockWhenWithDeadline(cond, deadline);
+ }
+
+ // ---------------------------------------------------------------------------
+ // Debug Support: Invariant Checking, Deadlock Detection, Logging.
+ // ---------------------------------------------------------------------------
+
+ // Mutex::EnableInvariantDebugging()
+ //
+ // If `invariant`!=null and if invariant debugging has been enabled globally,
+ // cause `(*invariant)(arg)` to be called at moments when the invariant for
+ // this `Mutex` should hold (for example: just after acquire, just before
+ // release).
+ //
+ // The routine `invariant` should have no side-effects since it is not
+ // guaranteed how many times it will be called; it should check the invariant
+ // and crash if it does not hold. Enabling global invariant debugging may
+ // substantially reduce `Mutex` performance; it should be set only for
+ // non-production runs. Optimization options may also disable invariant
+ // checks.
+ void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
+
+ // Mutex::EnableDebugLog()
+ //
+ // Cause all subsequent uses of this `Mutex` to be logged via
+ // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
+ // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
+ //
+ // Note: This method substantially reduces `Mutex` performance.
+ void EnableDebugLog(const char *name);
+
+ // Deadlock detection
+
+ // Mutex::ForgetDeadlockInfo()
+ //
+ // Forget any deadlock-detection information previously gathered
+ // about this `Mutex`. Call this method in debug mode when the lock ordering
+ // of a `Mutex` changes.
+ void ForgetDeadlockInfo();
+
+ // Mutex::AssertNotHeld()
+ //
+ // Return immediately if this thread does not hold this `Mutex` in any
+ // mode; otherwise, may report an error (typically by crashing with a
+ // diagnostic), or may return immediately.
+ //
+ // Currently this check is performed only if all of:
+ // - in debug mode
+ // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
+ // - number of locks concurrently held by this thread is not large.
+ // are true.
+ void AssertNotHeld() const;
+
+ // Special cases.
+
+ // A `MuHow` is a constant that indicates how a lock should be acquired.
+ // Internal implementation detail. Clients should ignore.
+ typedef const struct MuHowS *MuHow;
+
+ // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
+ //
+ // Causes the `Mutex` implementation to prepare itself for re-entry caused by
+ // future use of `Mutex` within a fatal signal handler. This method is
+ // intended for use only for last-ditch attempts to log crash information.
+ // It does not guarantee that attempts to use Mutexes within the handler will
+ // not deadlock; it merely makes other faults less likely.
+ //
+ // WARNING: This routine must be invoked from a signal handler, and the
+ // signal handler must either loop forever or terminate the process.
+ // Attempts to return from (or `longjmp` out of) the signal handler once this
+ // call has been made may cause arbitrary program behaviour including
+ // crashes and deadlocks.
+ static void InternalAttemptToUseMutexInFatalSignalHandler();
+
+ private:
+#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
+ friend class CondVar;
+
+ synchronization_internal::MutexImpl *impl() { return impl_.get(); }
+
+ synchronization_internal::SynchronizationStorage<
+ synchronization_internal::MutexImpl>
+ impl_;
+#else
+ std::atomic<intptr_t> mu_; // The Mutex state.
+
+ // Post()/Wait() versus associated PerThreadSem; in class for required
+ // friendship with PerThreadSem.
+ static inline void IncrementSynchSem(Mutex *mu,
+ base_internal::PerThreadSynch *w);
+ static inline bool DecrementSynchSem(
+ Mutex *mu, base_internal::PerThreadSynch *w,
+ synchronization_internal::KernelTimeout t);
+
+ // slow path acquire
+ void LockSlowLoop(SynchWaitParams *waitp, int flags);
+ // wrappers around LockSlowLoop()
+ bool LockSlowWithDeadline(MuHow how, const Condition *cond,
+ synchronization_internal::KernelTimeout t,
+ int flags);
+ void LockSlow(MuHow how, const Condition *cond,
+ int flags) ABSL_ATTRIBUTE_COLD;
+ // slow path release
+ void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
+ // Common code between Await() and AwaitWithTimeout/Deadline()
+ bool AwaitCommon(const Condition &cond,
+ synchronization_internal::KernelTimeout t);
+ // Attempt to remove thread s from queue.
+ void TryRemove(base_internal::PerThreadSynch *s);
+ // Block a thread on mutex.
+ void Block(base_internal::PerThreadSynch *s);
+ // Wake a thread; return successor.
+ base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
+
+ friend class CondVar; // for access to Trans()/Fer().
+ void Trans(MuHow how); // used for CondVar->Mutex transfer
+ void Fer(
+ base_internal::PerThreadSynch *w); // used for CondVar->Mutex transfer
+#endif
+
+ // Catch the error of writing Mutex when intending MutexLock.
+ Mutex(const volatile Mutex * /*ignored*/) {} // NOLINT(runtime/explicit)
+
+ Mutex(const Mutex&) = delete;
+ Mutex& operator=(const Mutex&) = delete;
+};
+
+// -----------------------------------------------------------------------------
+// Mutex RAII Wrappers
+// -----------------------------------------------------------------------------
+
+// MutexLock
+//
+// `MutexLock` is a helper class, which acquires and releases a `Mutex` via
+// RAII.
+//
+// Example:
+//
+// Class Foo {
+//
+// Foo::Bar* Baz() {
+// MutexLock l(&lock_);
+// ...
+// return bar;
+// }
+//
+// private:
+// Mutex lock_;
+// };
+class SCOPED_LOCKABLE MutexLock {
+ public:
+ explicit MutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
+ this->mu_->Lock();
+ }
+ ~MutexLock() UNLOCK_FUNCTION() { this->mu_->Unlock(); }
+ private:
+ Mutex *const mu_;
+ MutexLock(const MutexLock &) = delete; // NOLINT(runtime/mutex)
+ MutexLock& operator=(const MutexLock&) = delete;
+};
+
+// ReaderMutexLock
+//
+// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
+// releases a shared lock on a `Mutex` via RAII.
+class SCOPED_LOCKABLE ReaderMutexLock {
+ public:
+ explicit ReaderMutexLock(Mutex *mu) SHARED_LOCK_FUNCTION(mu)
+ : mu_(mu) {
+ mu->ReaderLock();
+ }
+ ~ReaderMutexLock() UNLOCK_FUNCTION() {
+ this->mu_->ReaderUnlock();
+ }
+ private:
+ Mutex *const mu_;
+ ReaderMutexLock(const ReaderMutexLock&) = delete;
+ ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
+};
+
+// WriterMutexLock
+//
+// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
+// releases a write (exclusive) lock on a `Mutex` va RAII.
+class SCOPED_LOCKABLE WriterMutexLock {
+ public:
+ explicit WriterMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)
+ : mu_(mu) {
+ mu->WriterLock();
+ }
+ ~WriterMutexLock() UNLOCK_FUNCTION() {
+ this->mu_->WriterUnlock();
+ }
+ private:
+ Mutex *const mu_;
+ WriterMutexLock(const WriterMutexLock&) = delete;
+ WriterMutexLock& operator=(const WriterMutexLock&) = delete;
+};
+
+// -----------------------------------------------------------------------------
+// Condition
+// -----------------------------------------------------------------------------
+//
+// As noted above, `Mutex` contains a number of member functions which take a
+// `Condition` as a argument; clients can wait for conditions to become `true`
+// before attempting to acquire the mutex. These sections are known as
+// "condition critical" sections. To use a `Condition`, you simply need to
+// construct it, and use within an appropriate `Mutex` member function;
+// everything else in the `Condition` class is an implementation detail.
+//
+// A `Condition` is specified as a function pointer which returns a boolean.
+// `Condition` functions should be pure functions -- their results should depend
+// only on passed arguments, should not consult any external state (such as
+// clocks), and should have no side-effects, aside from debug logging. Any
+// objects that the function may access should be limited to those which are
+// constant while the mutex is blocked on the condition (e.g. a stack variable),
+// or objects of state protected explicitly by the mutex.
+//
+// No matter which construction is used for `Condition`, the underlying
+// function pointer / functor / callable must not throw any
+// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
+// the face of a throwing `Condition`. (When Abseil is allowed to depend
+// on C++17, these function pointers will be explicitly marked
+// `noexcept`; until then this requirement cannot be enforced in the
+// type system.)
+//
+// Note: to use a `Condition`, you need only construct it and pass it within the
+// appropriate `Mutex' member function, such as `Mutex::Await()`.
+//
+// Example:
+//
+// // assume count_ is not internal reference count
+// int count_ GUARDED_BY(mu_);
+//
+// mu_.LockWhen(Condition(+[](const int* count) { return *count == 0; },
+// &count_));
+//
+// When multiple threads are waiting on exactly the same condition, make sure
+// that they are constructed with the same parameters (same pointer to function
+// + arg, or same pointer to object + method), so that the mutex implementation
+// can avoid redundantly evaluating the same condition for each thread.
+class Condition {
+ public:
+ // A Condition that returns the result of "(*func)(arg)"
+ Condition(bool (*func)(void *), void *arg);
+
+ // Templated version for people who are averse to casts.
+ //
+ // To use a lambda, prepend it with unary plus, which converts the lambda
+ // into a function pointer:
+ // Condition(+[](T* t) { return ...; }, arg).
+ //
+ // Note: lambdas in this case must contain no bound variables.
+ //
+ // See class comment for performance advice.
+ template<typename T>
+ Condition(bool (*func)(T *), T *arg);
+
+ // Templated version for invoking a method that returns a `bool`.
+ //
+ // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
+ // `object->Method()`.
+ //
+ // Implementation Note: `absl::internal::identity` is used to allow methods to
+ // come from base classes. A simpler signature like
+ // `Condition(T*, bool (T::*)())` does not suffice.
+ template<typename T>
+ Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
+
+ // Same as above, for const members
+ template<typename T>
+ Condition(const T *object,
+ bool (absl::internal::identity<T>::type::* method)() const);
+
+ // A Condition that returns the value of `*cond`
+ explicit Condition(const bool *cond);
+
+ // Templated version for invoking a functor that returns a `bool`.
+ // This approach accepts pointers to non-mutable lambdas, `std::function`,
+ // the result of` std::bind` and user-defined functors that define
+ // `bool F::operator()() const`.
+ //
+ // Example:
+ //
+ // auto reached = [this, current]() {
+ // mu_.AssertReaderHeld(); // For annotalysis.
+ // return processed_ >= current;
+ // };
+ // mu_.Await(Condition(&reached));
+
+ // See class comment for performance advice. In particular, if there
+ // might be more than one waiter for the same condition, make sure
+ // that all waiters construct the condition with the same pointers.
+
+ // Implementation note: The second template parameter ensures that this
+ // constructor doesn't participate in overload resolution if T doesn't have
+ // `bool operator() const`.
+ template <typename T, typename E = decltype(
+ static_cast<bool (T::*)() const>(&T::operator()))>
+ explicit Condition(const T *obj)
+ : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
+
+ // A Condition that always returns `true`.
+ static const Condition kTrue;
+
+ // Evaluates the condition.
+ bool Eval() const;
+
+ // Returns `true` if the two conditions are guaranteed to return the same
+ // value if evaluated at the same time, `false` if the evaluation *may* return
+ // different results.
+ //
+ // Two `Condition` values are guaranteed equal if both their `func` and `arg`
+ // components are the same. A null pointer is equivalent to a `true`
+ // condition.
+ static bool GuaranteedEqual(const Condition *a, const Condition *b);
+
+ private:
+ typedef bool (*InternalFunctionType)(void * arg);
+ typedef bool (Condition::*InternalMethodType)();
+ typedef bool (*InternalMethodCallerType)(void * arg,
+ InternalMethodType internal_method);
+
+ bool (*eval_)(const Condition*); // Actual evaluator
+ InternalFunctionType function_; // function taking pointer returning bool
+ InternalMethodType method_; // method returning bool
+ void *arg_; // arg of function_ or object of method_
+
+ Condition(); // null constructor used only to create kTrue
+
+ // Various functions eval_ can point to:
+ static bool CallVoidPtrFunction(const Condition*);
+ template <typename T> static bool CastAndCallFunction(const Condition* c);
+ template <typename T> static bool CastAndCallMethod(const Condition* c);
+};
+
+// -----------------------------------------------------------------------------
+// CondVar
+// -----------------------------------------------------------------------------
+//
+// A condition variable, reflecting state evaluated separately outside of the
+// `Mutex` object, which can be signaled to wake callers.
+// This class is not normally needed; use `Mutex` member functions such as
+// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
+// with many threads and many conditions, `CondVar` may be faster.
+//
+// The implementation may deliver signals to any condition variable at
+// any time, even when no call to `Signal()` or `SignalAll()` is made; as a
+// result, upon being awoken, you must check the logical condition you have
+// been waiting upon. The implementation wakes waiters in the FIFO order.
+//
+// Examples:
+//
+// Usage for a thread waiting for some condition C protected by mutex mu:
+// mu.Lock();
+// while (!C) { cv->Wait(&mu); } // releases and reacquires mu
+// // C holds; process data
+// mu.Unlock();
+//
+// Usage to wake T is:
+// mu.Lock();
+// // process data, possibly establishing C
+// if (C) { cv->Signal(); }
+// mu.Unlock();
+//
+// If C may be useful to more than one waiter, use `SignalAll()` instead of
+// `Signal()`.
+//
+// With this implementation it is efficient to use `Signal()/SignalAll()` inside
+// the locked region; this usage can make reasoning about your program easier.
+//
+class CondVar {
+ public:
+ CondVar();
+ ~CondVar();
+
+ // CondVar::Wait()
+ //
+ // Atomically releases a `Mutex` and blocks on this condition variable. After
+ // blocking, the thread will unblock, reacquire the `Mutex`, and return if
+ // either:
+ // - this condition variable is signalled with `SignalAll()`, or
+ // - this condition variable is signalled in any manner and this thread
+ // was the most recently blocked thread that has not yet woken.
+ // Requires and ensures that the current thread holds the `Mutex`.
+ void Wait(Mutex *mu);
+
+ // CondVar::WaitWithTimeout()
+ //
+ // Atomically releases a `Mutex`, blocks on this condition variable, and
+ // attempts to reacquire the mutex upon being signalled, or upon reaching the
+ // timeout.
+ //
+ // After blocking, the thread will unblock, reacquire the `Mutex`, and return
+ // for any of the following:
+ // - this condition variable is signalled with `SignalAll()`
+ // - the timeout has expired
+ // - this condition variable is signalled in any manner and this thread
+ // was the most recently blocked thread that has not yet woken.
+ //
+ // Negative timeouts are equivalent to a zero timeout.
+ //
+ // Returns true if the timeout has expired without this `CondVar`
+ // being signalled in any manner. If both the timeout has expired
+ // and this `CondVar` has been signalled, the implementation is free
+ // to return `true` or `false`.
+ //
+ // Requires and ensures that the current thread holds the `Mutex`.
+ bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
+
+ // CondVar::WaitWithDeadline()
+ //
+ // Atomically releases a `Mutex`, blocks on this condition variable, and
+ // attempts to reacquire the mutex within the provided deadline.
+ //
+ // After blocking, the thread will unblock, reacquire the `Mutex`, and return
+ // for any of the following:
+ // - this condition variable is signalled with `SignalAll()`
+ // - the deadline has passed
+ // - this condition variable is signalled in any manner and this thread
+ // was the most recently blocked thread that has not yet woken.
+ //
+ // Deadlines in the past are equivalent to an immediate deadline.
+ //
+ // Returns true if the deadline has passed without this `CondVar`
+ // being signalled in any manner. If both the deadline has passed
+ // and this `CondVar` has been signalled, the implementation is free
+ // to return `true` or `false`.
+ //
+ // Requires and ensures that the current thread holds the `Mutex`.
+ bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
+
+ // CondVar::Signal()
+ //
+ // Signal this `CondVar`; wake at least one waiter if one exists.
+ void Signal();
+
+ // CondVar::SignalAll()
+ //
+ // Signal this `CondVar`; wake all waiters.
+ void SignalAll();
+
+ // CondVar::EnableDebugLog()
+ //
+ // Causes all subsequent uses of this `CondVar` to be logged via
+ // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
+ // Note: this method substantially reduces `CondVar` performance.
+ void EnableDebugLog(const char *name);
+
+ private:
+#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
+ synchronization_internal::CondVarImpl *impl() { return impl_.get(); }
+ synchronization_internal::SynchronizationStorage<
+ synchronization_internal::CondVarImpl>
+ impl_;
+#else
+ bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
+ void Remove(base_internal::PerThreadSynch *s);
+ void Wakeup(base_internal::PerThreadSynch *w);
+ std::atomic<intptr_t> cv_; // Condition variable state.
+#endif
+ CondVar(const CondVar&) = delete;
+ CondVar& operator=(const CondVar&) = delete;
+};
+
+
+// Variants of MutexLock.
+//
+// If you find yourself using one of these, consider instead using
+// Mutex::Unlock() and/or if-statements for clarity.
+
+// MutexLockMaybe
+//
+// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
+class SCOPED_LOCKABLE MutexLockMaybe {
+ public:
+ explicit MutexLockMaybe(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)
+ : mu_(mu) { if (this->mu_ != nullptr) { this->mu_->Lock(); } }
+ ~MutexLockMaybe() UNLOCK_FUNCTION() {
+ if (this->mu_ != nullptr) { this->mu_->Unlock(); }
+ }
+ private:
+ Mutex *const mu_;
+ MutexLockMaybe(const MutexLockMaybe&) = delete;
+ MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
+};
+
+// ReleaseableMutexLock
+//
+// ReleasableMutexLock is like MutexLock, but permits `Release()` of its
+// mutex before destruction. `Release()` may be called at most once.
+class SCOPED_LOCKABLE ReleasableMutexLock {
+ public:
+ explicit ReleasableMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu)
+ : mu_(mu) {
+ this->mu_->Lock();
+ }
+ ~ReleasableMutexLock() UNLOCK_FUNCTION() {
+ if (this->mu_ != nullptr) { this->mu_->Unlock(); }
+ }
+
+ void Release() UNLOCK_FUNCTION();
+
+ private:
+ Mutex *mu_;
+ ReleasableMutexLock(const ReleasableMutexLock&) = delete;
+ ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
+};
+
+#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
+#else
+inline CondVar::CondVar() : cv_(0) {}
+#endif
+
+// static
+template <typename T>
+bool Condition::CastAndCallMethod(const Condition *c) {
+ typedef bool (T::*MemberType)();
+ MemberType rm = reinterpret_cast<MemberType>(c->method_);
+ T *x = static_cast<T *>(c->arg_);
+ return (x->*rm)();
+}
+
+// static
+template <typename T>
+bool Condition::CastAndCallFunction(const Condition *c) {
+ typedef bool (*FuncType)(T *);
+ FuncType fn = reinterpret_cast<FuncType>(c->function_);
+ T *x = static_cast<T *>(c->arg_);
+ return (*fn)(x);
+}
+
+template <typename T>
+inline Condition::Condition(bool (*func)(T *), T *arg)
+ : eval_(&CastAndCallFunction<T>),
+ function_(reinterpret_cast<InternalFunctionType>(func)),
+ method_(nullptr),
+ arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
+
+template <typename T>
+inline Condition::Condition(T *object,
+ bool (absl::internal::identity<T>::type::*method)())
+ : eval_(&CastAndCallMethod<T>),
+ function_(nullptr),
+ method_(reinterpret_cast<InternalMethodType>(method)),
+ arg_(object) {}
+
+template <typename T>
+inline Condition::Condition(const T *object,
+ bool (absl::internal::identity<T>::type::*method)()
+ const)
+ : eval_(&CastAndCallMethod<T>),
+ function_(nullptr),
+ method_(reinterpret_cast<InternalMethodType>(method)),
+ arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
+
+// Register a hook for profiling support.
+//
+// The function pointer registered here will be called whenever a mutex is
+// contended. The callback is given the absl/base/cycleclock.h timestamp when
+// waiting began.
+//
+// Calls to this function do not race or block, but there is no ordering
+// guaranteed between calls to this function and call to the provided hook.
+// In particular, the previously registered hook may still be called for some
+// time after this function returns.
+void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
+
+// Register a hook for Mutex tracing.
+//
+// The function pointer registered here will be called whenever a mutex is
+// contended. The callback is given an opaque handle to the contended mutex,
+// an event name, and the number of wait cycles (as measured by
+// //absl/base/internal/cycleclock.h, and which may not be real
+// "cycle" counts.)
+//
+// The only event name currently sent is "slow release".
+//
+// This has the same memory ordering concerns as RegisterMutexProfiler() above.
+void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
+ int64_t wait_cycles));
+
+// TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
+// into a single interface, since they are only ever called in pairs.
+
+// Register a hook for CondVar tracing.
+//
+// The function pointer registered here will be called here on various CondVar
+// events. The callback is given an opaque handle to the CondVar object and
+// a std::string identifying the event. This is thread-safe, but only a single
+// tracer can be registered.
+//
+// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
+// "SignalAll wakeup".
+//
+// This has the same memory ordering concerns as RegisterMutexProfiler() above.
+void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
+
+// Register a hook for symbolizing stack traces in deadlock detector reports.
+//
+// 'pc' is the program counter being symbolized, 'out' is the buffer to write
+// into, and 'out_size' is the size of the buffer. This function can return
+// false if symbolizing failed, or true if a null-terminated symbol was written
+// to 'out.'
+//
+// This has the same memory ordering concerns as RegisterMutexProfiler() above.
+void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
+
+// EnableMutexInvariantDebugging()
+//
+// Enable or disable global support for Mutex invariant debugging. If enabled,
+// then invariant predicates can be registered per-Mutex for debug checking.
+// See Mutex::EnableInvariantDebugging().
+void EnableMutexInvariantDebugging(bool enabled);
+
+// When in debug mode, and when the feature has been enabled globally, the
+// implementation will keep track of lock ordering and complain (or optionally
+// crash) if a cycle is detected in the acquired-before graph.
+
+// Possible modes of operation for the deadlock detector in debug mode.
+enum class OnDeadlockCycle {
+ kIgnore, // Neither report on nor attempt to track cycles in lock ordering
+ kReport, // Report lock cycles to stderr when detected
+ kAbort, // Report lock cycles to stderr when detected, then abort
+};
+
+// SetMutexDeadlockDetectionMode()
+//
+// Enable or disable global support for detection of potential deadlocks
+// due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of
+// lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph
+// will be maintained internally, and detected cycles will be reported in
+// the manner chosen here.
+void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
+
+} // namespace absl
+
+// In some build configurations we pass --detect-odr-violations to the
+// gold linker. This causes it to flag weak symbol overrides as ODR
+// violations. Because ODR only applies to C++ and not C,
+// --detect-odr-violations ignores symbols not mangled with C++ names.
+// By changing our extension points to be extern "C", we dodge this
+// check.
+extern "C" {
+void AbslInternalMutexYield();
+} // extern "C"
+#endif // ABSL_SYNCHRONIZATION_MUTEX_H_