summaryrefslogtreecommitdiff
path: root/absl/random/uniform_real_distribution_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/uniform_real_distribution_test.cc')
-rw-r--r--absl/random/uniform_real_distribution_test.cc322
1 files changed, 322 insertions, 0 deletions
diff --git a/absl/random/uniform_real_distribution_test.cc b/absl/random/uniform_real_distribution_test.cc
new file mode 100644
index 00000000..597f0ee5
--- /dev/null
+++ b/absl/random/uniform_real_distribution_test.cc
@@ -0,0 +1,322 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/random/uniform_real_distribution.h"
+
+#include <cmath>
+#include <cstdint>
+#include <iterator>
+#include <random>
+#include <sstream>
+#include <string>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/base/internal/raw_logging.h"
+#include "absl/random/internal/chi_square.h"
+#include "absl/random/internal/distribution_test_util.h"
+#include "absl/random/internal/sequence_urbg.h"
+#include "absl/random/random.h"
+#include "absl/strings/str_cat.h"
+
+// NOTES:
+// * Some documentation on generating random real values suggests that
+// it is possible to use std::nextafter(b, DBL_MAX) to generate a value on
+// the closed range [a, b]. Unfortunately, that technique is not universally
+// reliable due to floating point quantization.
+//
+// * absl::uniform_real_distribution<float> generates between 2^28 and 2^29
+// distinct floating point values in the range [0, 1).
+//
+// * absl::uniform_real_distribution<float> generates at least 2^23 distinct
+// floating point values in the range [1, 2). This should be the same as
+// any other range covered by a single exponent in IEEE 754.
+//
+// * absl::uniform_real_distribution<double> generates more than 2^52 distinct
+// values in the range [0, 1), and should generate at least 2^52 distinct
+// values in the range of [1, 2).
+//
+
+namespace {
+
+template <typename RealType>
+class UniformRealDistributionTest : public ::testing::Test {};
+
+using RealTypes = ::testing::Types<float, double, long double>;
+TYPED_TEST_SUITE(UniformRealDistributionTest, RealTypes);
+
+TYPED_TEST(UniformRealDistributionTest, ParamSerializeTest) {
+ using param_type =
+ typename absl::uniform_real_distribution<TypeParam>::param_type;
+
+ constexpr const TypeParam a{1152921504606846976};
+
+ constexpr int kCount = 1000;
+ absl::InsecureBitGen gen;
+ for (const auto& param : {
+ param_type(),
+ param_type(TypeParam(2.0), TypeParam(2.0)), // Same
+ param_type(TypeParam(-0.1), TypeParam(0.1)),
+ param_type(TypeParam(0.05), TypeParam(0.12)),
+ param_type(TypeParam(-0.05), TypeParam(0.13)),
+ param_type(TypeParam(-0.05), TypeParam(-0.02)),
+ // double range = 0
+ // 2^60 , 2^60 + 2^6
+ param_type(a, TypeParam(1152921504606847040)),
+ // 2^60 , 2^60 + 2^7
+ param_type(a, TypeParam(1152921504606847104)),
+ // double range = 2^8
+ // 2^60 , 2^60 + 2^8
+ param_type(a, TypeParam(1152921504606847232)),
+ // float range = 0
+ // 2^60 , 2^60 + 2^36
+ param_type(a, TypeParam(1152921573326323712)),
+ // 2^60 , 2^60 + 2^37
+ param_type(a, TypeParam(1152921642045800448)),
+ // float range = 2^38
+ // 2^60 , 2^60 + 2^38
+ param_type(a, TypeParam(1152921779484753920)),
+ // Limits
+ param_type(0, std::numeric_limits<TypeParam>::max()),
+ param_type(std::numeric_limits<TypeParam>::lowest(), 0),
+ param_type(0, std::numeric_limits<TypeParam>::epsilon()),
+ param_type(-std::numeric_limits<TypeParam>::epsilon(),
+ std::numeric_limits<TypeParam>::epsilon()),
+ param_type(std::numeric_limits<TypeParam>::epsilon(),
+ 2 * std::numeric_limits<TypeParam>::epsilon()),
+ }) {
+ // Validate parameters.
+ const auto a = param.a();
+ const auto b = param.b();
+ absl::uniform_real_distribution<TypeParam> before(a, b);
+ EXPECT_EQ(before.a(), param.a());
+ EXPECT_EQ(before.b(), param.b());
+
+ {
+ absl::uniform_real_distribution<TypeParam> via_param(param);
+ EXPECT_EQ(via_param, before);
+ }
+
+ std::stringstream ss;
+ ss << before;
+ absl::uniform_real_distribution<TypeParam> after(TypeParam(1.0),
+ TypeParam(3.1));
+
+ EXPECT_NE(before.a(), after.a());
+ EXPECT_NE(before.b(), after.b());
+ EXPECT_NE(before.param(), after.param());
+ EXPECT_NE(before, after);
+
+ ss >> after;
+
+ EXPECT_EQ(before.a(), after.a());
+ EXPECT_EQ(before.b(), after.b());
+ EXPECT_EQ(before.param(), after.param());
+ EXPECT_EQ(before, after);
+
+ // Smoke test.
+ auto sample_min = after.max();
+ auto sample_max = after.min();
+ for (int i = 0; i < kCount; i++) {
+ auto sample = after(gen);
+ // Failure here indicates a bug in uniform_real_distribution::operator(),
+ // or bad parameters--range too large, etc.
+ if (after.min() == after.max()) {
+ EXPECT_EQ(sample, after.min());
+ } else {
+ EXPECT_GE(sample, after.min());
+ EXPECT_LT(sample, after.max());
+ }
+ if (sample > sample_max) {
+ sample_max = sample;
+ }
+ if (sample < sample_min) {
+ sample_min = sample;
+ }
+ }
+
+ if (!std::is_same<TypeParam, long double>::value) {
+ // static_cast<double>(long double) can overflow.
+ std::string msg = absl::StrCat("Range: ", static_cast<double>(sample_min),
+ ", ", static_cast<double>(sample_max));
+ ABSL_RAW_LOG(INFO, "%s", msg.c_str());
+ }
+ }
+}
+
+TYPED_TEST(UniformRealDistributionTest, ViolatesPreconditionsDeathTest) {
+#if GTEST_HAS_DEATH_TEST
+ // Hi < Lo
+ EXPECT_DEBUG_DEATH(
+ { absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0); }, "");
+
+ // Hi - Lo > numeric_limits<>::max()
+ EXPECT_DEBUG_DEATH(
+ {
+ absl::uniform_real_distribution<TypeParam> dist(
+ std::numeric_limits<TypeParam>::lowest(),
+ std::numeric_limits<TypeParam>::max());
+ },
+ "");
+#endif // GTEST_HAS_DEATH_TEST
+#if defined(NDEBUG)
+ // opt-mode, for invalid parameters, will generate a garbage value,
+ // but should not enter an infinite loop.
+ absl::InsecureBitGen gen;
+ {
+ absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0);
+ auto x = dist(gen);
+ EXPECT_FALSE(std::isnan(x)) << x;
+ }
+ {
+ absl::uniform_real_distribution<TypeParam> dist(
+ std::numeric_limits<TypeParam>::lowest(),
+ std::numeric_limits<TypeParam>::max());
+ auto x = dist(gen);
+ // Infinite result.
+ EXPECT_FALSE(std::isfinite(x)) << x;
+ }
+#endif // NDEBUG
+}
+
+TYPED_TEST(UniformRealDistributionTest, TestMoments) {
+ constexpr int kSize = 1000000;
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen rng;
+ absl::uniform_real_distribution<TypeParam> dist;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = dist(rng);
+ }
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(0.5, moments.mean, 0.01);
+ EXPECT_NEAR(1 / 12.0, moments.variance, 0.015);
+ EXPECT_NEAR(0.0, moments.skewness, 0.02);
+ EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.015);
+}
+
+TYPED_TEST(UniformRealDistributionTest, ChiSquaredTest50) {
+ using absl::random_internal::kChiSquared;
+ using param_type =
+ typename absl::uniform_real_distribution<TypeParam>::param_type;
+
+ constexpr size_t kTrials = 100000;
+ constexpr int kBuckets = 50;
+ constexpr double kExpected =
+ static_cast<double>(kTrials) / static_cast<double>(kBuckets);
+
+ // 1-in-100000 threshold, but remember, there are about 8 tests
+ // in this file. And the test could fail for other reasons.
+ // Empirically validated with --runs_per_test=10000.
+ const int kThreshold =
+ absl::random_internal::ChiSquareValue(kBuckets - 1, 0.999999);
+
+ absl::InsecureBitGen rng;
+ for (const auto& param : {param_type(0, 1), param_type(5, 12),
+ param_type(-5, 13), param_type(-5, -2)}) {
+ const double min_val = param.a();
+ const double max_val = param.b();
+ const double factor = kBuckets / (max_val - min_val);
+
+ std::vector<int32_t> counts(kBuckets, 0);
+ absl::uniform_real_distribution<TypeParam> dist(param);
+ for (size_t i = 0; i < kTrials; i++) {
+ auto x = dist(rng);
+ auto bucket = static_cast<size_t>((x - min_val) * factor);
+ counts[bucket]++;
+ }
+
+ double chi_square = absl::random_internal::ChiSquareWithExpected(
+ std::begin(counts), std::end(counts), kExpected);
+ if (chi_square > kThreshold) {
+ double p_value =
+ absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
+
+ // Chi-squared test failed. Output does not appear to be uniform.
+ std::string msg;
+ for (const auto& a : counts) {
+ absl::StrAppend(&msg, a, "\n");
+ }
+ absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
+ absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
+ kThreshold);
+ ABSL_RAW_LOG(INFO, "%s", msg.c_str());
+ FAIL() << msg;
+ }
+ }
+}
+
+TYPED_TEST(UniformRealDistributionTest, StabilityTest) {
+ // absl::uniform_real_distribution stability relies only on
+ // random_internal::RandU64ToDouble and random_internal::RandU64ToFloat.
+ absl::random_internal::sequence_urbg urbg(
+ {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
+ 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
+ 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
+ 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
+
+ std::vector<int> output(12);
+
+ absl::uniform_real_distribution<TypeParam> dist;
+ std::generate(std::begin(output), std::end(output), [&] {
+ return static_cast<int>(TypeParam(1000000) * dist(urbg));
+ });
+
+ EXPECT_THAT(
+ output, //
+ testing::ElementsAre(59, 999246, 762494, 395876, 167716, 82545, 925251,
+ 77341, 12527, 708791, 834451, 932808));
+}
+
+TEST(UniformRealDistributionTest, AlgorithmBounds) {
+ absl::uniform_real_distribution<double> dist;
+
+ {
+ // This returns the smallest value >0 from absl::uniform_real_distribution.
+ absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
+ double a = dist(urbg);
+ EXPECT_EQ(a, 5.42101086242752217004e-20);
+ }
+
+ {
+ // This returns a value very near 0.5 from absl::uniform_real_distribution.
+ absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
+ double a = dist(urbg);
+ EXPECT_EQ(a, 0.499999999999999944489);
+ }
+ {
+ // This returns a value very near 0.5 from absl::uniform_real_distribution.
+ absl::random_internal::sequence_urbg urbg({0x8000000000000000ull});
+ double a = dist(urbg);
+ EXPECT_EQ(a, 0.5);
+ }
+
+ {
+ // This returns the largest value <1 from absl::uniform_real_distribution.
+ absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFEFull});
+ double a = dist(urbg);
+ EXPECT_EQ(a, 0.999999999999999888978);
+ }
+ {
+ // This *ALSO* returns the largest value <1.
+ absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
+ double a = dist(urbg);
+ EXPECT_EQ(a, 0.999999999999999888978);
+ }
+}
+
+} // namespace