diff options
Diffstat (limited to 'absl/random/internal')
-rw-r--r-- | absl/random/internal/BUILD.bazel | 16 | ||||
-rw-r--r-- | absl/random/internal/distribution_impl.h | 194 | ||||
-rw-r--r-- | absl/random/internal/generate_real.h | 144 | ||||
-rw-r--r-- | absl/random/internal/generate_real_test.cc (renamed from absl/random/internal/distribution_impl_test.cc) | 111 |
4 files changed, 224 insertions, 241 deletions
diff --git a/absl/random/internal/BUILD.bazel b/absl/random/internal/BUILD.bazel index ec58cecd..91388d19 100644 --- a/absl/random/internal/BUILD.bazel +++ b/absl/random/internal/BUILD.bazel @@ -175,9 +175,9 @@ cc_library( ) cc_library( - name = "distribution_impl", + name = "generate_real", hdrs = [ - "distribution_impl.h", + "generate_real.h", ], copts = ABSL_DEFAULT_COPTS, linkopts = ABSL_DEFAULT_LINKOPTS, @@ -185,8 +185,7 @@ cc_library( ":fastmath", ":traits", "//absl/base:bits", - "//absl/base:config", - "//absl/numeric:int128", + "//absl/meta:type_traits", ], ) @@ -398,16 +397,17 @@ cc_test( ) cc_test( - name = "distribution_impl_test", + name = "generate_real_test", size = "small", - srcs = ["distribution_impl_test.cc"], + srcs = [ + "generate_real_test.cc", + ], copts = ABSL_TEST_COPTS, linkopts = ABSL_DEFAULT_LINKOPTS, deps = [ - ":distribution_impl", + ":generate_real", "//absl/base:bits", "//absl/flags:flag", - "//absl/numeric:int128", "@com_google_googletest//:gtest_main", ], ) diff --git a/absl/random/internal/distribution_impl.h b/absl/random/internal/distribution_impl.h deleted file mode 100644 index 49b3e1a6..00000000 --- a/absl/random/internal/distribution_impl.h +++ /dev/null @@ -1,194 +0,0 @@ -// Copyright 2017 The Abseil Authors. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// https://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_ -#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_ - -// This file contains some implementation details which are used by one or more -// of the absl random number distributions. - -#include <cfloat> -#include <cstddef> -#include <cstdint> -#include <cstring> -#include <limits> -#include <type_traits> - -#if (defined(_WIN32) || defined(_WIN64)) && defined(_M_IA64) -#include <intrin.h> // NOLINT(build/include_order) -#pragma intrinsic(_umul128) -#define ABSL_INTERNAL_USE_UMUL128 1 -#endif - -#include "absl/base/config.h" -#include "absl/base/internal/bits.h" -#include "absl/numeric/int128.h" -#include "absl/random/internal/fastmath.h" -#include "absl/random/internal/traits.h" - -namespace absl { -namespace random_internal { - -// Creates a double from `bits`, with the template fields controlling the -// output. -// -// RandU64To is both more efficient and generates more unique values in the -// result interval than known implementations of std::generate_canonical(). -// -// The `Signed` parameter controls whether positive, negative, or both are -// returned (thus affecting the output interval). -// When Signed == SignedValueT, range is U(-1, 1) -// When Signed == NegativeValueT, range is U(-1, 0) -// When Signed == PositiveValueT, range is U(0, 1) -// -// When the `IncludeZero` parameter is true, the function may return 0 for some -// inputs, otherwise it never returns 0. -// -// The `ExponentBias` parameter determines the scale of the output range by -// adjusting the exponent. -// -// When a value in U(0,1) is required, use: -// RandU64ToDouble<PositiveValueT, true, 0>(); -// -// When a value in U(-1,1) is required, use: -// RandU64ToDouble<SignedValueT, false, 0>() => U(-1, 1) -// This generates more distinct values than the mathematically equivalent -// expression `U(0, 1) * 2.0 - 1.0`, and is preferable. -// -// Scaling the result by powers of 2 (and avoiding a multiply) is also possible: -// RandU64ToDouble<PositiveValueT, false, 1>(); => U(0, 2) -// RandU64ToDouble<PositiveValueT, false, -1>(); => U(0, 0.5) -// - -// Tristate types controlling the output. -struct PositiveValueT {}; -struct NegativeValueT {}; -struct SignedValueT {}; - -// RandU64ToDouble is the double-result variant of RandU64To, described above. -template <typename Signed, bool IncludeZero, int ExponentBias = 0> -inline double RandU64ToDouble(uint64_t bits) { - static_assert(std::is_same<Signed, PositiveValueT>::value || - std::is_same<Signed, NegativeValueT>::value || - std::is_same<Signed, SignedValueT>::value, - ""); - - // Maybe use the left-most bit for a sign bit. - uint64_t sign = std::is_same<Signed, NegativeValueT>::value - ? 0x8000000000000000ull - : 0; // Sign bits. - - if (std::is_same<Signed, SignedValueT>::value) { - sign = bits & 0x8000000000000000ull; - bits = bits & 0x7FFFFFFFFFFFFFFFull; - } - if (IncludeZero) { - if (bits == 0u) return 0; - } - - // Number of leading zeros is mapped to the exponent: 2^-clz - int clz = base_internal::CountLeadingZeros64(bits); - // Shift number left to erase leading zeros. - bits <<= IncludeZero ? clz : (clz & 63); - - // Shift number right to remove bits that overflow double mantissa. The - // direction of the shift depends on `clz`. - bits >>= (64 - DBL_MANT_DIG); - - // Compute IEEE 754 double exponent. - // In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the - // exponent to account for that. - const uint64_t exp = - (std::is_same<Signed, SignedValueT>::value ? 1023U : 1022U) + - static_cast<uint64_t>(ExponentBias - clz); - constexpr int kExp = DBL_MANT_DIG - 1; - // Construct IEEE 754 double from exponent and mantissa. - const uint64_t val = sign | (exp << kExp) | (bits & ((1ULL << kExp) - 1U)); - - double res; - static_assert(sizeof(res) == sizeof(val), "double is not 64 bit"); - // Memcpy value from "val" to "res" to avoid aliasing problems. Assumes that - // endian-ness is same for double and uint64_t. - std::memcpy(&res, &val, sizeof(res)); - - return res; -} - -// RandU64ToFloat is the float-result variant of RandU64To, described above. -template <typename Signed, bool IncludeZero, int ExponentBias = 0> -inline float RandU64ToFloat(uint64_t bits) { - static_assert(std::is_same<Signed, PositiveValueT>::value || - std::is_same<Signed, NegativeValueT>::value || - std::is_same<Signed, SignedValueT>::value, - ""); - - // Maybe use the left-most bit for a sign bit. - uint64_t sign = std::is_same<Signed, NegativeValueT>::value - ? 0x80000000ul - : 0; // Sign bits. - - if (std::is_same<Signed, SignedValueT>::value) { - uint64_t a = bits & 0x8000000000000000ull; - sign = static_cast<uint32_t>(a >> 32); - bits = bits & 0x7FFFFFFFFFFFFFFFull; - } - if (IncludeZero) { - if (bits == 0u) return 0; - } - - // Number of leading zeros is mapped to the exponent: 2^-clz - int clz = base_internal::CountLeadingZeros64(bits); - // Shift number left to erase leading zeros. - bits <<= IncludeZero ? clz : (clz & 63); - // Shift number right to remove bits that overflow double mantissa. The - // direction of the shift depends on `clz`. - bits >>= (64 - FLT_MANT_DIG); - - // Construct IEEE 754 float exponent. - // In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the - // exponent to account for that. - const uint32_t exp = - (std::is_same<Signed, SignedValueT>::value ? 127U : 126U) + - static_cast<uint32_t>(ExponentBias - clz); - constexpr int kExp = FLT_MANT_DIG - 1; - const uint32_t val = sign | (exp << kExp) | (bits & ((1U << kExp) - 1U)); - - float res; - static_assert(sizeof(res) == sizeof(val), "float is not 32 bit"); - // Assumes that endian-ness is same for float and uint32_t. - std::memcpy(&res, &val, sizeof(res)); - - return res; -} - -template <typename Result> -struct RandU64ToReal { - template <typename Signed, bool IncludeZero, int ExponentBias = 0> - static inline Result Value(uint64_t bits) { - return RandU64ToDouble<Signed, IncludeZero, ExponentBias>(bits); - } -}; - -template <> -struct RandU64ToReal<float> { - template <typename Signed, bool IncludeZero, int ExponentBias = 0> - static inline float Value(uint64_t bits) { - return RandU64ToFloat<Signed, IncludeZero, ExponentBias>(bits); - } -}; - -} // namespace random_internal -} // namespace absl - -#endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_ diff --git a/absl/random/internal/generate_real.h b/absl/random/internal/generate_real.h new file mode 100644 index 00000000..246d863e --- /dev/null +++ b/absl/random/internal/generate_real.h @@ -0,0 +1,144 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_RANDOM_INTERNAL_GENERATE_REAL_H_ +#define ABSL_RANDOM_INTERNAL_GENERATE_REAL_H_ + +// This file contains some implementation details which are used by one or more +// of the absl random number distributions. + +#include <cstdint> +#include <cstring> +#include <limits> +#include <type_traits> + +#include "absl/base/internal/bits.h" +#include "absl/meta/type_traits.h" +#include "absl/random/internal/fastmath.h" +#include "absl/random/internal/traits.h" + +namespace absl { +namespace random_internal { + +// Tristate tag types controlling the output of GenerateRealFromBits. +struct GeneratePositiveTag {}; +struct GenerateNegativeTag {}; +struct GenerateSignedTag {}; + +// GenerateRealFromBits generates a single real value from a single 64-bit +// `bits` with template fields controlling the output. +// +// The `SignedTag` parameter controls whether positive, negative, +// or either signed/unsigned may be returned. +// When SignedTag == GeneratePositiveTag, range is U(0, 1) +// When SignedTag == GenerateNegativeTag, range is U(-1, 0) +// When SignedTag == GenerateSignedTag, range is U(-1, 1) +// +// When the `IncludeZero` parameter is true, the function may return 0 for some +// inputs, otherwise it never returns 0. +// +// When a value in U(0,1) is required, use: +// Uniform64ToReal<double, PositiveValueT, true>; +// +// When a value in U(-1,1) is required, use: +// Uniform64ToReal<double, SignedValueT, false>; +// +// This generates more distinct values than the mathematical equivalent +// `U(0, 1) * 2.0 - 1.0`. +// +// Scaling the result by powers of 2 (and avoiding a multiply) is also possible: +// GenerateRealFromBits<double>(..., -1); => U(0, 0.5) +// GenerateRealFromBits<double>(..., 1); => U(0, 2) +// +template <typename RealType, // Real type, either float or double. + typename SignedTag = GeneratePositiveTag, // Whether a positive, + // negative, or signed + // value is generated. + bool IncludeZero = true> +inline RealType GenerateRealFromBits(uint64_t bits, int exp_bias = 0) { + using real_type = RealType; + using uint_type = absl::conditional_t<std::is_same<real_type, float>::value, + uint32_t, uint64_t>; + + static_assert( + (std::is_same<double, real_type>::value || + std::is_same<float, real_type>::value), + "GenerateRealFromBits must be parameterized by either float or double."); + + static_assert(sizeof(uint_type) == sizeof(real_type), + "Mismatched unsinged and real types."); + + static_assert((std::numeric_limits<real_type>::is_iec559 && + std::numeric_limits<real_type>::radix == 2), + "RealType representation is not IEEE 754 binary."); + + static_assert((std::is_same<SignedTag, GeneratePositiveTag>::value || + std::is_same<SignedTag, GenerateNegativeTag>::value || + std::is_same<SignedTag, GenerateSignedTag>::value), + ""); + + static constexpr int kExp = std::numeric_limits<real_type>::digits - 1; + static constexpr uint_type kMask = (static_cast<uint_type>(1) << kExp) - 1u; + static constexpr int kUintBits = sizeof(uint_type) * 8; + + int exp = exp_bias + int{std::numeric_limits<real_type>::max_exponent - 2}; + + // Determine the sign bit. + // Depending on the SignedTag, this may use the left-most bit + // or it may be a constant value. + uint_type sign = std::is_same<SignedTag, GenerateNegativeTag>::value + ? (static_cast<uint_type>(1) << (kUintBits - 1)) + : 0; + if (std::is_same<SignedTag, GenerateSignedTag>::value) { + if (std::is_same<uint_type, uint64_t>::value) { + sign = bits & uint64_t{0x8000000000000000}; + } + if (std::is_same<uint_type, uint32_t>::value) { + const uint64_t tmp = bits & uint64_t{0x8000000000000000}; + sign = static_cast<uint32_t>(tmp >> 32); + } + // adjust the bits and the exponent to account for removing + // the leading bit. + bits = bits & uint64_t{0x7FFFFFFFFFFFFFFF}; + exp++; + } + if (IncludeZero) { + if (bits == 0u) return 0; + } + + // Number of leading zeros is mapped to the exponent: 2^-clz + // bits is 0..01xxxxxx. After shifting, we're left with 1xxx...0..0 + int clz = base_internal::CountLeadingZeros64(bits); + bits <<= (IncludeZero ? clz : (clz & 63)); // remove 0-bits. + exp -= clz; // set the exponent. + bits >>= (63 - kExp); + + // Construct the 32-bit or 64-bit IEEE 754 floating-point value from + // the individual fields: sign, exp, mantissa(bits). + uint_type val = + (std::is_same<SignedTag, GeneratePositiveTag>::value ? 0u : sign) | + (static_cast<uint_type>(exp) << kExp) | + (static_cast<uint_type>(bits) & kMask); + + // bit_cast to the output-type + real_type result; + memcpy(static_cast<void*>(&result), static_cast<const void*>(&val), + sizeof(result)); + return result; +} + +} // namespace random_internal +} // namespace absl + +#endif // ABSL_RANDOM_INTERNAL_GENERATE_REAL_H_ diff --git a/absl/random/internal/distribution_impl_test.cc b/absl/random/internal/generate_real_test.cc index fcc16904..aa02f0c2 100644 --- a/absl/random/internal/distribution_impl_test.cc +++ b/absl/random/internal/generate_real_test.cc @@ -12,57 +12,74 @@ // See the License for the specific language governing permissions and // limitations under the License. -#include "absl/random/internal/distribution_impl.h" +#include "absl/random/internal/generate_real.h" + +#include <cfloat> +#include <cstddef> +#include <cstdint> +#include <string> #include "gtest/gtest.h" #include "absl/base/internal/bits.h" #include "absl/flags/flag.h" -#include "absl/numeric/int128.h" ABSL_FLAG(int64_t, absl_random_test_trials, 50000, "Number of trials for the probability tests."); -using absl::random_internal::NegativeValueT; -using absl::random_internal::PositiveValueT; -using absl::random_internal::RandU64ToDouble; -using absl::random_internal::RandU64ToFloat; -using absl::random_internal::SignedValueT; +using absl::random_internal::GenerateNegativeTag; +using absl::random_internal::GeneratePositiveTag; +using absl::random_internal::GenerateRealFromBits; +using absl::random_internal::GenerateSignedTag; namespace { -TEST(DistributionImplTest, U64ToFloat_Positive_NoZero_Test) { +TEST(GenerateRealTest, U64ToFloat_Positive_NoZero_Test) { auto ToFloat = [](uint64_t a) { - return RandU64ToFloat<PositiveValueT, false>(a); + return GenerateRealFromBits<float, GeneratePositiveTag, false>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 2.710505431e-20f); EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), 0.5); + EXPECT_EQ(ToFloat(0x8000000000000001), 0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f); } -TEST(DistributionImplTest, U64ToFloat_Positive_Zero_Test) { +TEST(GenerateRealTest, U64ToFloat_Positive_Zero_Test) { auto ToFloat = [](uint64_t a) { - return RandU64ToFloat<PositiveValueT, true>(a); + return GenerateRealFromBits<float, GeneratePositiveTag, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0.0); EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), 0.5); + EXPECT_EQ(ToFloat(0x8000000000000001), 0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f); } -TEST(DistributionImplTest, U64ToFloat_Negative_NoZero_Test) { +TEST(GenerateRealTest, U64ToFloat_Negative_NoZero_Test) { auto ToFloat = [](uint64_t a) { - return RandU64ToFloat<NegativeValueT, false>(a); + return GenerateRealFromBits<float, GenerateNegativeTag, false>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), -2.710505431e-20f); EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), -0.5); + EXPECT_EQ(ToFloat(0x8000000000000001), -0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } -TEST(DistributionImplTest, U64ToFloat_Signed_NoZero_Test) { +TEST(GenerateRealTest, U64ToFloat_Negative_Zero_Test) { auto ToFloat = [](uint64_t a) { - return RandU64ToFloat<SignedValueT, false>(a); + return GenerateRealFromBits<float, GenerateNegativeTag, true>(a); + }; + EXPECT_EQ(ToFloat(0x0000000000000000), 0.0); + EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f); + EXPECT_EQ(ToFloat(0x8000000000000000), -0.5); + EXPECT_EQ(ToFloat(0x8000000000000001), -0.5); + EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); +} + +TEST(GenerateRealTest, U64ToFloat_Signed_NoZero_Test) { + auto ToFloat = [](uint64_t a) { + return GenerateRealFromBits<float, GenerateSignedTag, false>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 5.421010862e-20f); EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f); @@ -72,9 +89,9 @@ TEST(DistributionImplTest, U64ToFloat_Signed_NoZero_Test) { EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } -TEST(DistributionImplTest, U64ToFloat_Signed_Zero_Test) { +TEST(GenerateRealTest, U64ToFloat_Signed_Zero_Test) { auto ToFloat = [](uint64_t a) { - return RandU64ToFloat<SignedValueT, true>(a); + return GenerateRealFromBits<float, GenerateSignedTag, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0); EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f); @@ -84,9 +101,9 @@ TEST(DistributionImplTest, U64ToFloat_Signed_Zero_Test) { EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } -TEST(DistributionImplTest, U64ToFloat_Signed_Bias_Test) { +TEST(GenerateRealTest, U64ToFloat_Signed_Bias_Test) { auto ToFloat = [](uint64_t a) { - return RandU64ToFloat<SignedValueT, true, 1>(a); + return GenerateRealFromBits<float, GenerateSignedTag, true>(a, 1); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0); EXPECT_EQ(ToFloat(0x0000000000000001), 2 * 1.084202172e-19f); @@ -96,9 +113,9 @@ TEST(DistributionImplTest, U64ToFloat_Signed_Bias_Test) { EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 2 * -0.9999999404f); } -TEST(DistributionImplTest, U64ToFloatTest) { +TEST(GenerateRealTest, U64ToFloatTest) { auto ToFloat = [](uint64_t a) -> float { - return RandU64ToFloat<PositiveValueT, true>(a); + return GenerateRealFromBits<float, GeneratePositiveTag, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0.0f); @@ -150,44 +167,60 @@ TEST(DistributionImplTest, U64ToFloatTest) { } } -TEST(DistributionImplTest, U64ToDouble_Positive_NoZero_Test) { +TEST(GenerateRealTest, U64ToDouble_Positive_NoZero_Test) { auto ToDouble = [](uint64_t a) { - return RandU64ToDouble<PositiveValueT, false>(a); + return GenerateRealFromBits<double, GeneratePositiveTag, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 2.710505431213761085e-20); EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000002), 1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x8000000000000000), 0.5); + EXPECT_EQ(ToDouble(0x8000000000000001), 0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978); } -TEST(DistributionImplTest, U64ToDouble_Positive_Zero_Test) { +TEST(GenerateRealTest, U64ToDouble_Positive_Zero_Test) { auto ToDouble = [](uint64_t a) { - return RandU64ToDouble<PositiveValueT, true>(a); + return GenerateRealFromBits<double, GeneratePositiveTag, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x8000000000000000), 0.5); + EXPECT_EQ(ToDouble(0x8000000000000001), 0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978); } -TEST(DistributionImplTest, U64ToDouble_Negative_NoZero_Test) { +TEST(GenerateRealTest, U64ToDouble_Negative_NoZero_Test) { auto ToDouble = [](uint64_t a) { - return RandU64ToDouble<NegativeValueT, false>(a); + return GenerateRealFromBits<double, GenerateNegativeTag, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), -2.710505431213761085e-20); EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x8000000000000000), -0.5); + EXPECT_EQ(ToDouble(0x8000000000000001), -0.5); + EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); +} + +TEST(GenerateRealTest, U64ToDouble_Negative_Zero_Test) { + auto ToDouble = [](uint64_t a) { + return GenerateRealFromBits<double, GenerateNegativeTag, true>(a); + }; + + EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); + EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20); + EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19); + EXPECT_EQ(ToDouble(0x8000000000000000), -0.5); + EXPECT_EQ(ToDouble(0x8000000000000001), -0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } -TEST(DistributionImplTest, U64ToDouble_Signed_NoZero_Test) { +TEST(GenerateRealTest, U64ToDouble_Signed_NoZero_Test) { auto ToDouble = [](uint64_t a) { - return RandU64ToDouble<SignedValueT, false>(a); + return GenerateRealFromBits<double, GenerateSignedTag, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20); @@ -198,9 +231,9 @@ TEST(DistributionImplTest, U64ToDouble_Signed_NoZero_Test) { EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } -TEST(DistributionImplTest, U64ToDouble_Signed_Zero_Test) { +TEST(GenerateRealTest, U64ToDouble_Signed_Zero_Test) { auto ToDouble = [](uint64_t a) { - return RandU64ToDouble<SignedValueT, true>(a); + return GenerateRealFromBits<double, GenerateSignedTag, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19); @@ -210,9 +243,9 @@ TEST(DistributionImplTest, U64ToDouble_Signed_Zero_Test) { EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } -TEST(DistributionImplTest, U64ToDouble_Signed_Bias_Test) { +TEST(GenerateRealTest, U64ToDouble_GenerateSignedTag_Bias_Test) { auto ToDouble = [](uint64_t a) { - return RandU64ToDouble<SignedValueT, true, -1>(a); + return GenerateRealFromBits<double, GenerateSignedTag, true>(a, -1); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19 / 2); @@ -222,9 +255,9 @@ TEST(DistributionImplTest, U64ToDouble_Signed_Bias_Test) { EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978 / 2); } -TEST(DistributionImplTest, U64ToDoubleTest) { +TEST(GenerateRealTest, U64ToDoubleTest) { auto ToDouble = [](uint64_t a) { - return RandU64ToDouble<PositiveValueT, true>(a); + return GenerateRealFromBits<double, GeneratePositiveTag, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); @@ -296,9 +329,9 @@ TEST(DistributionImplTest, U64ToDoubleTest) { } } -TEST(DistributionImplTest, U64ToDoubleSignedTest) { +TEST(GenerateRealTest, U64ToDoubleSignedTest) { auto ToDouble = [](uint64_t a) { - return RandU64ToDouble<SignedValueT, false>(a); + return GenerateRealFromBits<double, GenerateSignedTag, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20); @@ -379,10 +412,10 @@ TEST(DistributionImplTest, U64ToDoubleSignedTest) { } } -TEST(DistributionImplTest, ExhaustiveFloat) { +TEST(GenerateRealTest, ExhaustiveFloat) { using absl::base_internal::CountLeadingZeros64; auto ToFloat = [](uint64_t a) { - return RandU64ToFloat<PositiveValueT, true>(a); + return GenerateRealFromBits<float, GeneratePositiveTag, true>(a); }; // Rely on RandU64ToFloat generating values from greatest to least when |