summaryrefslogtreecommitdiff
path: root/absl/random/internal/distribution_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/internal/distribution_impl.h')
-rw-r--r--absl/random/internal/distribution_impl.h262
1 files changed, 0 insertions, 262 deletions
diff --git a/absl/random/internal/distribution_impl.h b/absl/random/internal/distribution_impl.h
deleted file mode 100644
index a8e5d61e..00000000
--- a/absl/random/internal/distribution_impl.h
+++ /dev/null
@@ -1,262 +0,0 @@
-// Copyright 2017 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
-#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
-
-// This file contains some implementation details which are used by one or more
-// of the absl random number distributions.
-
-#include <cfloat>
-#include <cstddef>
-#include <cstdint>
-#include <cstring>
-#include <limits>
-#include <type_traits>
-
-#if (defined(_WIN32) || defined(_WIN64)) && defined(_M_IA64)
-#include <intrin.h> // NOLINT(build/include_order)
-#pragma intrinsic(_umul128)
-#define ABSL_INTERNAL_USE_UMUL128 1
-#endif
-
-#include "absl/base/config.h"
-#include "absl/base/internal/bits.h"
-#include "absl/numeric/int128.h"
-#include "absl/random/internal/fastmath.h"
-#include "absl/random/internal/traits.h"
-
-namespace absl {
-inline namespace lts_2019_08_08 {
-namespace random_internal {
-
-// Creates a double from `bits`, with the template fields controlling the
-// output.
-//
-// RandU64To is both more efficient and generates more unique values in the
-// result interval than known implementations of std::generate_canonical().
-//
-// The `Signed` parameter controls whether positive, negative, or both are
-// returned (thus affecting the output interval).
-// When Signed == SignedValueT, range is U(-1, 1)
-// When Signed == NegativeValueT, range is U(-1, 0)
-// When Signed == PositiveValueT, range is U(0, 1)
-//
-// When the `IncludeZero` parameter is true, the function may return 0 for some
-// inputs, otherwise it never returns 0.
-//
-// The `ExponentBias` parameter determines the scale of the output range by
-// adjusting the exponent.
-//
-// When a value in U(0,1) is required, use:
-// RandU64ToDouble<PositiveValueT, true, 0>();
-//
-// When a value in U(-1,1) is required, use:
-// RandU64ToDouble<SignedValueT, false, 0>() => U(-1, 1)
-// This generates more distinct values than the mathematically equivalent
-// expression `U(0, 1) * 2.0 - 1.0`, and is preferable.
-//
-// Scaling the result by powers of 2 (and avoiding a multiply) is also possible:
-// RandU64ToDouble<PositiveValueT, false, 1>(); => U(0, 2)
-// RandU64ToDouble<PositiveValueT, false, -1>(); => U(0, 0.5)
-//
-
-// Tristate types controlling the output.
-struct PositiveValueT {};
-struct NegativeValueT {};
-struct SignedValueT {};
-
-// RandU64ToDouble is the double-result variant of RandU64To, described above.
-template <typename Signed, bool IncludeZero, int ExponentBias = 0>
-inline double RandU64ToDouble(uint64_t bits) {
- static_assert(std::is_same<Signed, PositiveValueT>::value ||
- std::is_same<Signed, NegativeValueT>::value ||
- std::is_same<Signed, SignedValueT>::value,
- "");
-
- // Maybe use the left-most bit for a sign bit.
- uint64_t sign = std::is_same<Signed, NegativeValueT>::value
- ? 0x8000000000000000ull
- : 0; // Sign bits.
-
- if (std::is_same<Signed, SignedValueT>::value) {
- sign = bits & 0x8000000000000000ull;
- bits = bits & 0x7FFFFFFFFFFFFFFFull;
- }
- if (IncludeZero) {
- if (bits == 0u) return 0;
- }
-
- // Number of leading zeros is mapped to the exponent: 2^-clz
- int clz = base_internal::CountLeadingZeros64(bits);
- // Shift number left to erase leading zeros.
- bits <<= IncludeZero ? clz : (clz & 63);
-
- // Shift number right to remove bits that overflow double mantissa. The
- // direction of the shift depends on `clz`.
- bits >>= (64 - DBL_MANT_DIG);
-
- // Compute IEEE 754 double exponent.
- // In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
- // exponent to account for that.
- const uint64_t exp =
- (std::is_same<Signed, SignedValueT>::value ? 1023U : 1022U) +
- static_cast<uint64_t>(ExponentBias - clz);
- constexpr int kExp = DBL_MANT_DIG - 1;
- // Construct IEEE 754 double from exponent and mantissa.
- const uint64_t val = sign | (exp << kExp) | (bits & ((1ULL << kExp) - 1U));
-
- double res;
- static_assert(sizeof(res) == sizeof(val), "double is not 64 bit");
- // Memcpy value from "val" to "res" to avoid aliasing problems. Assumes that
- // endian-ness is same for double and uint64_t.
- std::memcpy(&res, &val, sizeof(res));
-
- return res;
-}
-
-// RandU64ToFloat is the float-result variant of RandU64To, described above.
-template <typename Signed, bool IncludeZero, int ExponentBias = 0>
-inline float RandU64ToFloat(uint64_t bits) {
- static_assert(std::is_same<Signed, PositiveValueT>::value ||
- std::is_same<Signed, NegativeValueT>::value ||
- std::is_same<Signed, SignedValueT>::value,
- "");
-
- // Maybe use the left-most bit for a sign bit.
- uint64_t sign = std::is_same<Signed, NegativeValueT>::value
- ? 0x80000000ul
- : 0; // Sign bits.
-
- if (std::is_same<Signed, SignedValueT>::value) {
- uint64_t a = bits & 0x8000000000000000ull;
- sign = static_cast<uint32_t>(a >> 32);
- bits = bits & 0x7FFFFFFFFFFFFFFFull;
- }
- if (IncludeZero) {
- if (bits == 0u) return 0;
- }
-
- // Number of leading zeros is mapped to the exponent: 2^-clz
- int clz = base_internal::CountLeadingZeros64(bits);
- // Shift number left to erase leading zeros.
- bits <<= IncludeZero ? clz : (clz & 63);
- // Shift number right to remove bits that overflow double mantissa. The
- // direction of the shift depends on `clz`.
- bits >>= (64 - FLT_MANT_DIG);
-
- // Construct IEEE 754 float exponent.
- // In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
- // exponent to account for that.
- const uint32_t exp =
- (std::is_same<Signed, SignedValueT>::value ? 127U : 126U) +
- static_cast<uint32_t>(ExponentBias - clz);
- constexpr int kExp = FLT_MANT_DIG - 1;
- const uint32_t val = sign | (exp << kExp) | (bits & ((1U << kExp) - 1U));
-
- float res;
- static_assert(sizeof(res) == sizeof(val), "float is not 32 bit");
- // Assumes that endian-ness is same for float and uint32_t.
- std::memcpy(&res, &val, sizeof(res));
-
- return res;
-}
-
-template <typename Result>
-struct RandU64ToReal {
- template <typename Signed, bool IncludeZero, int ExponentBias = 0>
- static inline Result Value(uint64_t bits) {
- return RandU64ToDouble<Signed, IncludeZero, ExponentBias>(bits);
- }
-};
-
-template <>
-struct RandU64ToReal<float> {
- template <typename Signed, bool IncludeZero, int ExponentBias = 0>
- static inline float Value(uint64_t bits) {
- return RandU64ToFloat<Signed, IncludeZero, ExponentBias>(bits);
- }
-};
-
-inline uint128 MultiplyU64ToU128(uint64_t a, uint64_t b) {
-#if defined(ABSL_HAVE_INTRINSIC_INT128)
- return uint128(static_cast<__uint128_t>(a) * b);
-#elif defined(ABSL_INTERNAL_USE_UMUL128)
- // uint64_t * uint64_t => uint128 multiply using imul intrinsic on MSVC.
- uint64_t high = 0;
- const uint64_t low = _umul128(a, b, &high);
- return absl::MakeUint128(high, low);
-#else
- // uint128(a) * uint128(b) in emulated mode computes a full 128-bit x 128-bit
- // multiply. However there are many cases where that is not necessary, and it
- // is only necessary to support a 64-bit x 64-bit = 128-bit multiply. This is
- // for those cases.
- const uint64_t a00 = static_cast<uint32_t>(a);
- const uint64_t a32 = a >> 32;
- const uint64_t b00 = static_cast<uint32_t>(b);
- const uint64_t b32 = b >> 32;
-
- const uint64_t c00 = a00 * b00;
- const uint64_t c32a = a00 * b32;
- const uint64_t c32b = a32 * b00;
- const uint64_t c64 = a32 * b32;
-
- const uint32_t carry =
- static_cast<uint32_t>(((c00 >> 32) + static_cast<uint32_t>(c32a) +
- static_cast<uint32_t>(c32b)) >>
- 32);
-
- return absl::MakeUint128(c64 + (c32a >> 32) + (c32b >> 32) + carry,
- c00 + (c32a << 32) + (c32b << 32));
-#endif
-}
-
-// wide_multiply<T> multiplies two N-bit values to a 2N-bit result.
-template <typename UIntType>
-struct wide_multiply {
- static constexpr size_t kN = std::numeric_limits<UIntType>::digits;
- using input_type = UIntType;
- using result_type = typename random_internal::unsigned_bits<kN * 2>::type;
-
- static result_type multiply(input_type a, input_type b) {
- return static_cast<result_type>(a) * b;
- }
-
- static input_type hi(result_type r) { return r >> kN; }
- static input_type lo(result_type r) { return r; }
-
- static_assert(std::is_unsigned<UIntType>::value,
- "Class-template wide_multiply<> argument must be unsigned.");
-};
-
-#ifndef ABSL_HAVE_INTRINSIC_INT128
-template <>
-struct wide_multiply<uint64_t> {
- using input_type = uint64_t;
- using result_type = uint128;
-
- static result_type multiply(uint64_t a, uint64_t b) {
- return MultiplyU64ToU128(a, b);
- }
-
- static uint64_t hi(result_type r) { return Uint128High64(r); }
- static uint64_t lo(result_type r) { return Uint128Low64(r); }
-};
-#endif
-
-} // namespace random_internal
-} // inline namespace lts_2019_08_08
-} // namespace absl
-
-#endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_