summaryrefslogtreecommitdiff
path: root/absl/random/internal/distribution_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/internal/distribution_impl.h')
-rw-r--r--absl/random/internal/distribution_impl.h262
1 files changed, 262 insertions, 0 deletions
diff --git a/absl/random/internal/distribution_impl.h b/absl/random/internal/distribution_impl.h
new file mode 100644
index 00000000..a8e5d61e
--- /dev/null
+++ b/absl/random/internal/distribution_impl.h
@@ -0,0 +1,262 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
+#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
+
+// This file contains some implementation details which are used by one or more
+// of the absl random number distributions.
+
+#include <cfloat>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <limits>
+#include <type_traits>
+
+#if (defined(_WIN32) || defined(_WIN64)) && defined(_M_IA64)
+#include <intrin.h> // NOLINT(build/include_order)
+#pragma intrinsic(_umul128)
+#define ABSL_INTERNAL_USE_UMUL128 1
+#endif
+
+#include "absl/base/config.h"
+#include "absl/base/internal/bits.h"
+#include "absl/numeric/int128.h"
+#include "absl/random/internal/fastmath.h"
+#include "absl/random/internal/traits.h"
+
+namespace absl {
+inline namespace lts_2019_08_08 {
+namespace random_internal {
+
+// Creates a double from `bits`, with the template fields controlling the
+// output.
+//
+// RandU64To is both more efficient and generates more unique values in the
+// result interval than known implementations of std::generate_canonical().
+//
+// The `Signed` parameter controls whether positive, negative, or both are
+// returned (thus affecting the output interval).
+// When Signed == SignedValueT, range is U(-1, 1)
+// When Signed == NegativeValueT, range is U(-1, 0)
+// When Signed == PositiveValueT, range is U(0, 1)
+//
+// When the `IncludeZero` parameter is true, the function may return 0 for some
+// inputs, otherwise it never returns 0.
+//
+// The `ExponentBias` parameter determines the scale of the output range by
+// adjusting the exponent.
+//
+// When a value in U(0,1) is required, use:
+// RandU64ToDouble<PositiveValueT, true, 0>();
+//
+// When a value in U(-1,1) is required, use:
+// RandU64ToDouble<SignedValueT, false, 0>() => U(-1, 1)
+// This generates more distinct values than the mathematically equivalent
+// expression `U(0, 1) * 2.0 - 1.0`, and is preferable.
+//
+// Scaling the result by powers of 2 (and avoiding a multiply) is also possible:
+// RandU64ToDouble<PositiveValueT, false, 1>(); => U(0, 2)
+// RandU64ToDouble<PositiveValueT, false, -1>(); => U(0, 0.5)
+//
+
+// Tristate types controlling the output.
+struct PositiveValueT {};
+struct NegativeValueT {};
+struct SignedValueT {};
+
+// RandU64ToDouble is the double-result variant of RandU64To, described above.
+template <typename Signed, bool IncludeZero, int ExponentBias = 0>
+inline double RandU64ToDouble(uint64_t bits) {
+ static_assert(std::is_same<Signed, PositiveValueT>::value ||
+ std::is_same<Signed, NegativeValueT>::value ||
+ std::is_same<Signed, SignedValueT>::value,
+ "");
+
+ // Maybe use the left-most bit for a sign bit.
+ uint64_t sign = std::is_same<Signed, NegativeValueT>::value
+ ? 0x8000000000000000ull
+ : 0; // Sign bits.
+
+ if (std::is_same<Signed, SignedValueT>::value) {
+ sign = bits & 0x8000000000000000ull;
+ bits = bits & 0x7FFFFFFFFFFFFFFFull;
+ }
+ if (IncludeZero) {
+ if (bits == 0u) return 0;
+ }
+
+ // Number of leading zeros is mapped to the exponent: 2^-clz
+ int clz = base_internal::CountLeadingZeros64(bits);
+ // Shift number left to erase leading zeros.
+ bits <<= IncludeZero ? clz : (clz & 63);
+
+ // Shift number right to remove bits that overflow double mantissa. The
+ // direction of the shift depends on `clz`.
+ bits >>= (64 - DBL_MANT_DIG);
+
+ // Compute IEEE 754 double exponent.
+ // In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
+ // exponent to account for that.
+ const uint64_t exp =
+ (std::is_same<Signed, SignedValueT>::value ? 1023U : 1022U) +
+ static_cast<uint64_t>(ExponentBias - clz);
+ constexpr int kExp = DBL_MANT_DIG - 1;
+ // Construct IEEE 754 double from exponent and mantissa.
+ const uint64_t val = sign | (exp << kExp) | (bits & ((1ULL << kExp) - 1U));
+
+ double res;
+ static_assert(sizeof(res) == sizeof(val), "double is not 64 bit");
+ // Memcpy value from "val" to "res" to avoid aliasing problems. Assumes that
+ // endian-ness is same for double and uint64_t.
+ std::memcpy(&res, &val, sizeof(res));
+
+ return res;
+}
+
+// RandU64ToFloat is the float-result variant of RandU64To, described above.
+template <typename Signed, bool IncludeZero, int ExponentBias = 0>
+inline float RandU64ToFloat(uint64_t bits) {
+ static_assert(std::is_same<Signed, PositiveValueT>::value ||
+ std::is_same<Signed, NegativeValueT>::value ||
+ std::is_same<Signed, SignedValueT>::value,
+ "");
+
+ // Maybe use the left-most bit for a sign bit.
+ uint64_t sign = std::is_same<Signed, NegativeValueT>::value
+ ? 0x80000000ul
+ : 0; // Sign bits.
+
+ if (std::is_same<Signed, SignedValueT>::value) {
+ uint64_t a = bits & 0x8000000000000000ull;
+ sign = static_cast<uint32_t>(a >> 32);
+ bits = bits & 0x7FFFFFFFFFFFFFFFull;
+ }
+ if (IncludeZero) {
+ if (bits == 0u) return 0;
+ }
+
+ // Number of leading zeros is mapped to the exponent: 2^-clz
+ int clz = base_internal::CountLeadingZeros64(bits);
+ // Shift number left to erase leading zeros.
+ bits <<= IncludeZero ? clz : (clz & 63);
+ // Shift number right to remove bits that overflow double mantissa. The
+ // direction of the shift depends on `clz`.
+ bits >>= (64 - FLT_MANT_DIG);
+
+ // Construct IEEE 754 float exponent.
+ // In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
+ // exponent to account for that.
+ const uint32_t exp =
+ (std::is_same<Signed, SignedValueT>::value ? 127U : 126U) +
+ static_cast<uint32_t>(ExponentBias - clz);
+ constexpr int kExp = FLT_MANT_DIG - 1;
+ const uint32_t val = sign | (exp << kExp) | (bits & ((1U << kExp) - 1U));
+
+ float res;
+ static_assert(sizeof(res) == sizeof(val), "float is not 32 bit");
+ // Assumes that endian-ness is same for float and uint32_t.
+ std::memcpy(&res, &val, sizeof(res));
+
+ return res;
+}
+
+template <typename Result>
+struct RandU64ToReal {
+ template <typename Signed, bool IncludeZero, int ExponentBias = 0>
+ static inline Result Value(uint64_t bits) {
+ return RandU64ToDouble<Signed, IncludeZero, ExponentBias>(bits);
+ }
+};
+
+template <>
+struct RandU64ToReal<float> {
+ template <typename Signed, bool IncludeZero, int ExponentBias = 0>
+ static inline float Value(uint64_t bits) {
+ return RandU64ToFloat<Signed, IncludeZero, ExponentBias>(bits);
+ }
+};
+
+inline uint128 MultiplyU64ToU128(uint64_t a, uint64_t b) {
+#if defined(ABSL_HAVE_INTRINSIC_INT128)
+ return uint128(static_cast<__uint128_t>(a) * b);
+#elif defined(ABSL_INTERNAL_USE_UMUL128)
+ // uint64_t * uint64_t => uint128 multiply using imul intrinsic on MSVC.
+ uint64_t high = 0;
+ const uint64_t low = _umul128(a, b, &high);
+ return absl::MakeUint128(high, low);
+#else
+ // uint128(a) * uint128(b) in emulated mode computes a full 128-bit x 128-bit
+ // multiply. However there are many cases where that is not necessary, and it
+ // is only necessary to support a 64-bit x 64-bit = 128-bit multiply. This is
+ // for those cases.
+ const uint64_t a00 = static_cast<uint32_t>(a);
+ const uint64_t a32 = a >> 32;
+ const uint64_t b00 = static_cast<uint32_t>(b);
+ const uint64_t b32 = b >> 32;
+
+ const uint64_t c00 = a00 * b00;
+ const uint64_t c32a = a00 * b32;
+ const uint64_t c32b = a32 * b00;
+ const uint64_t c64 = a32 * b32;
+
+ const uint32_t carry =
+ static_cast<uint32_t>(((c00 >> 32) + static_cast<uint32_t>(c32a) +
+ static_cast<uint32_t>(c32b)) >>
+ 32);
+
+ return absl::MakeUint128(c64 + (c32a >> 32) + (c32b >> 32) + carry,
+ c00 + (c32a << 32) + (c32b << 32));
+#endif
+}
+
+// wide_multiply<T> multiplies two N-bit values to a 2N-bit result.
+template <typename UIntType>
+struct wide_multiply {
+ static constexpr size_t kN = std::numeric_limits<UIntType>::digits;
+ using input_type = UIntType;
+ using result_type = typename random_internal::unsigned_bits<kN * 2>::type;
+
+ static result_type multiply(input_type a, input_type b) {
+ return static_cast<result_type>(a) * b;
+ }
+
+ static input_type hi(result_type r) { return r >> kN; }
+ static input_type lo(result_type r) { return r; }
+
+ static_assert(std::is_unsigned<UIntType>::value,
+ "Class-template wide_multiply<> argument must be unsigned.");
+};
+
+#ifndef ABSL_HAVE_INTRINSIC_INT128
+template <>
+struct wide_multiply<uint64_t> {
+ using input_type = uint64_t;
+ using result_type = uint128;
+
+ static result_type multiply(uint64_t a, uint64_t b) {
+ return MultiplyU64ToU128(a, b);
+ }
+
+ static uint64_t hi(result_type r) { return Uint128High64(r); }
+ static uint64_t lo(result_type r) { return Uint128Low64(r); }
+};
+#endif
+
+} // namespace random_internal
+} // inline namespace lts_2019_08_08
+} // namespace absl
+
+#endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_