summaryrefslogtreecommitdiff
path: root/absl/random/distributions_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/distributions_test.cc')
-rw-r--r--absl/random/distributions_test.cc494
1 files changed, 494 insertions, 0 deletions
diff --git a/absl/random/distributions_test.cc b/absl/random/distributions_test.cc
new file mode 100644
index 00000000..eb82868d
--- /dev/null
+++ b/absl/random/distributions_test.cc
@@ -0,0 +1,494 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/random/distributions.h"
+
+#include <cmath>
+#include <cstdint>
+#include <random>
+#include <vector>
+
+#include "gtest/gtest.h"
+#include "absl/random/internal/distribution_test_util.h"
+#include "absl/random/random.h"
+
+namespace {
+
+constexpr int kSize = 400000;
+
+class RandomDistributionsTest : public testing::Test {};
+
+TEST_F(RandomDistributionsTest, UniformBoundFunctions) {
+ using absl::IntervalClosedClosed;
+ using absl::IntervalClosedOpen;
+ using absl::IntervalOpenClosed;
+ using absl::IntervalOpenOpen;
+ using absl::random_internal::uniform_lower_bound;
+ using absl::random_internal::uniform_upper_bound;
+
+ // absl::uniform_int_distribution natively assumes IntervalClosedClosed
+ // absl::uniform_real_distribution natively assumes IntervalClosedOpen
+
+ EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, 0, 100), 1);
+ EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, 0, 100), 1);
+ EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, 0, 1.0), 0);
+ EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, 0, 1.0), 0);
+ EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, 0, 1.0), 0);
+ EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, 0, 1.0), 0);
+
+ EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, 0, 100), 0);
+ EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, 0, 100), 0);
+ EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, 0, 1.0), 0);
+ EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, 0, 1.0), 0);
+ EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, 0, 1.0), 0);
+ EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, 0, 1.0), 0);
+
+ EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, 0, 100), 99);
+ EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, 0, 100), 99);
+ EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, 0, 1.0), 1.0);
+ EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, 0, 1.0), 1.0);
+ EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, 0, 1.0), 1.0);
+ EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, 0, 1.0), 1.0);
+
+ EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, 0, 100), 100);
+ EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0, 100), 100);
+ EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, 0, 1.0), 1.0);
+ EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, 0, 1.0), 1.0);
+ EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, 0, 1.0), 1.0);
+ EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, 0, 1.0), 1.0);
+
+ // Negative value tests
+ EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, -100, -1), -99);
+ EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, -100, -1), -99);
+ EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, -2.0, -1.0), -2.0);
+ EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, -2.0, -1.0), -2.0);
+ EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, -2.0, -1.0), -2.0);
+ EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, -2.0, -1.0), -2.0);
+
+ EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, -100, -1), -100);
+ EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, -100, -1), -100);
+ EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, -2.0, -1.0), -2.0);
+ EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, -2.0, -1.0), -2.0);
+ EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, -2.0, -1.0),
+ -2.0);
+ EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, -2.0, -1.0), -2.0);
+
+ EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, -100, -1), -2);
+ EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, -100, -1), -2);
+ EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, -2.0, -1.0), -1.0);
+ EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, -2.0, -1.0), -1.0);
+ EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, -2.0, -1.0), -1.0);
+ EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, -2.0, -1.0), -1.0);
+
+ EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, -100, -1), -1);
+ EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, -100, -1), -1);
+ EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, -2.0, -1.0), -1.0);
+ EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, -2.0, -1.0), -1.0);
+ EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, -2.0, -1.0), -1.0);
+ EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, -2.0, -1.0),
+ -1.0);
+
+ // Edge cases: the next value toward itself is itself.
+ const double d = 1.0;
+ const float f = 1.0;
+ EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, d, d), d);
+ EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, f, f), f);
+
+ EXPECT_GT(uniform_lower_bound(IntervalOpenClosed, 1.0, 2.0), 1.0);
+ EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, +0.0), 1.0);
+ EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -0.0), 1.0);
+ EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -1.0), 1.0);
+
+ EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0f,
+ std::numeric_limits<float>::max()),
+ std::numeric_limits<float>::max());
+ EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0,
+ std::numeric_limits<double>::max()),
+ std::numeric_limits<double>::max());
+}
+
+struct Invalid {};
+
+template <typename A, typename B>
+auto InferredUniformReturnT(int)
+ -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
+ std::declval<A>(), std::declval<B>()));
+
+template <typename, typename>
+Invalid InferredUniformReturnT(...);
+
+template <typename TagType, typename A, typename B>
+auto InferredTaggedUniformReturnT(int)
+ -> decltype(absl::Uniform(std::declval<TagType>(),
+ std::declval<absl::InsecureBitGen&>(),
+ std::declval<A>(), std::declval<B>()));
+
+template <typename, typename, typename>
+Invalid InferredTaggedUniformReturnT(...);
+
+// Given types <A, B, Expect>, CheckArgsInferType() verifies that
+//
+// absl::Uniform(gen, A{}, B{})
+//
+// returns the type "Expect".
+//
+// This interface can also be used to assert that a given absl::Uniform()
+// overload does not exist / will not compile. Given types <A, B>, the
+// expression
+//
+// decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
+//
+// will not compile, leaving the definition of InferredUniformReturnT<A, B> to
+// resolve (via SFINAE) to the overload which returns type "Invalid". This
+// allows tests to assert that an invocation such as
+//
+// absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
+//
+// should not compile, since neither type, float nor int, can precisely
+// represent both endpoint-values. Writing:
+//
+// CheckArgsInferType<float, int, Invalid>()
+//
+// will assert that this overload does not exist.
+template <typename A, typename B, typename Expect>
+void CheckArgsInferType() {
+ static_assert(
+ absl::conjunction<
+ std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
+ std::is_same<Expect,
+ decltype(InferredUniformReturnT<B, A>(0))>>::value,
+ "");
+ static_assert(
+ absl::conjunction<
+ std::is_same<Expect,
+ decltype(InferredTaggedUniformReturnT<
+ absl::random_internal::IntervalOpenOpenT, A, B>(
+ 0))>,
+ std::is_same<Expect,
+ decltype(InferredTaggedUniformReturnT<
+ absl::random_internal::IntervalOpenOpenT, B, A>(
+ 0))>>::value,
+ "");
+}
+
+template <typename A, typename B, typename ExplicitRet>
+auto ExplicitUniformReturnT(int) -> decltype(
+ absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
+ std::declval<A>(), std::declval<B>()));
+
+template <typename, typename, typename ExplicitRet>
+Invalid ExplicitUniformReturnT(...);
+
+template <typename TagType, typename A, typename B, typename ExplicitRet>
+auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
+ std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
+ std::declval<A>(), std::declval<B>()));
+
+template <typename, typename, typename, typename ExplicitRet>
+Invalid ExplicitTaggedUniformReturnT(...);
+
+// Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
+//
+// absl::Uniform<Expect>(gen, A{}, B{})
+//
+// returns the type "Expect", and that the function-overload has the signature
+//
+// Expect(URBG&, Expect, Expect)
+template <typename A, typename B, typename Expect>
+void CheckArgsReturnExpectedType() {
+ static_assert(
+ absl::conjunction<
+ std::is_same<Expect,
+ decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
+ std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
+ 0))>>::value,
+ "");
+ static_assert(
+ absl::conjunction<
+ std::is_same<Expect,
+ decltype(ExplicitTaggedUniformReturnT<
+ absl::random_internal::IntervalOpenOpenT, A, B,
+ Expect>(0))>,
+ std::is_same<Expect,
+ decltype(ExplicitTaggedUniformReturnT<
+ absl::random_internal::IntervalOpenOpenT, B, A,
+ Expect>(0))>>::value,
+ "");
+}
+
+TEST_F(RandomDistributionsTest, UniformTypeInference) {
+ // Infers common types.
+ CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
+ CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
+ CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
+ CheckArgsInferType<int16_t, int16_t, int16_t>();
+ CheckArgsInferType<int32_t, int32_t, int32_t>();
+ CheckArgsInferType<int64_t, int64_t, int64_t>();
+ CheckArgsInferType<float, float, float>();
+ CheckArgsInferType<double, double, double>();
+
+ // Explicitly-specified return-values override inferences.
+ CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
+ CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
+ CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
+ CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
+ CheckArgsReturnExpectedType<int16_t, int32_t, double>();
+ CheckArgsReturnExpectedType<float, float, double>();
+ CheckArgsReturnExpectedType<int, int, int16_t>();
+
+ // Properly promotes uint16_t.
+ CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
+ CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
+ CheckArgsInferType<uint16_t, int32_t, int32_t>();
+ CheckArgsInferType<uint16_t, int64_t, int64_t>();
+ CheckArgsInferType<uint16_t, float, float>();
+ CheckArgsInferType<uint16_t, double, double>();
+
+ // Properly promotes int16_t.
+ CheckArgsInferType<int16_t, int32_t, int32_t>();
+ CheckArgsInferType<int16_t, int64_t, int64_t>();
+ CheckArgsInferType<int16_t, float, float>();
+ CheckArgsInferType<int16_t, double, double>();
+
+ // Invalid (u)int16_t-pairings do not compile.
+ // See "CheckArgsInferType" comments above, for how this is achieved.
+ CheckArgsInferType<uint16_t, int16_t, Invalid>();
+ CheckArgsInferType<int16_t, uint32_t, Invalid>();
+ CheckArgsInferType<int16_t, uint64_t, Invalid>();
+
+ // Properly promotes uint32_t.
+ CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
+ CheckArgsInferType<uint32_t, int64_t, int64_t>();
+ CheckArgsInferType<uint32_t, double, double>();
+
+ // Properly promotes int32_t.
+ CheckArgsInferType<int32_t, int64_t, int64_t>();
+ CheckArgsInferType<int32_t, double, double>();
+
+ // Invalid (u)int32_t-pairings do not compile.
+ CheckArgsInferType<uint32_t, int32_t, Invalid>();
+ CheckArgsInferType<int32_t, uint64_t, Invalid>();
+ CheckArgsInferType<int32_t, float, Invalid>();
+ CheckArgsInferType<uint32_t, float, Invalid>();
+
+ // Invalid (u)int64_t-pairings do not compile.
+ CheckArgsInferType<uint64_t, int64_t, Invalid>();
+ CheckArgsInferType<int64_t, float, Invalid>();
+ CheckArgsInferType<int64_t, double, Invalid>();
+
+ // Properly promotes float.
+ CheckArgsInferType<float, double, double>();
+
+ // Examples.
+ absl::InsecureBitGen gen;
+ EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
+ EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
+ EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
+ static_cast<uint16_t>(0), 1.0f));
+ EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
+ EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
+ EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
+ EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
+ EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
+}
+
+TEST_F(RandomDistributionsTest, UniformNoBounds) {
+ absl::InsecureBitGen gen;
+
+ absl::Uniform<uint8_t>(gen);
+ absl::Uniform<uint16_t>(gen);
+ absl::Uniform<uint32_t>(gen);
+ absl::Uniform<uint64_t>(gen);
+}
+
+// TODO(lar): Validate properties of non-default interval-semantics.
+TEST_F(RandomDistributionsTest, UniformReal) {
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = absl::Uniform(gen, 0, 1.0);
+ }
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(0.5, moments.mean, 0.02);
+ EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
+ EXPECT_NEAR(0.0, moments.skewness, 0.02);
+ EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
+}
+
+TEST_F(RandomDistributionsTest, UniformInt) {
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ const int64_t kMax = 1000000000000ll;
+ int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
+ // convert to double.
+ values[i] = static_cast<double>(j) / static_cast<double>(kMax);
+ }
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(0.5, moments.mean, 0.02);
+ EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
+ EXPECT_NEAR(0.0, moments.skewness, 0.02);
+ EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
+
+ /*
+ // NOTE: These are not supported by absl::Uniform, which is specialized
+ // on integer and real valued types.
+
+ enum E { E0, E1 }; // enum
+ enum S : int { S0, S1 }; // signed enum
+ enum U : unsigned int { U0, U1 }; // unsigned enum
+
+ absl::Uniform(gen, E0, E1);
+ absl::Uniform(gen, S0, S1);
+ absl::Uniform(gen, U0, U1);
+ */
+}
+
+TEST_F(RandomDistributionsTest, Exponential) {
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = absl::Exponential<double>(gen);
+ }
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(1.0, moments.mean, 0.02);
+ EXPECT_NEAR(1.0, moments.variance, 0.025);
+ EXPECT_NEAR(2.0, moments.skewness, 0.1);
+ EXPECT_LT(5.0, moments.kurtosis);
+}
+
+TEST_F(RandomDistributionsTest, PoissonDefault) {
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = absl::Poisson<int64_t>(gen);
+ }
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(1.0, moments.mean, 0.02);
+ EXPECT_NEAR(1.0, moments.variance, 0.02);
+ EXPECT_NEAR(1.0, moments.skewness, 0.025);
+ EXPECT_LT(2.0, moments.kurtosis);
+}
+
+TEST_F(RandomDistributionsTest, PoissonLarge) {
+ constexpr double kMean = 100000000.0;
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = absl::Poisson<int64_t>(gen, kMean);
+ }
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
+ EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
+ EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
+ EXPECT_LT(2.0, moments.kurtosis);
+}
+
+TEST_F(RandomDistributionsTest, Bernoulli) {
+ constexpr double kP = 0.5151515151;
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = absl::Bernoulli(gen, kP);
+ }
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(kP, moments.mean, 0.01);
+}
+
+TEST_F(RandomDistributionsTest, Beta) {
+ constexpr double kAlpha = 2.0;
+ constexpr double kBeta = 3.0;
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = absl::Beta(gen, kAlpha, kBeta);
+ }
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(0.4, moments.mean, 0.01);
+}
+
+TEST_F(RandomDistributionsTest, Zipf) {
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = absl::Zipf<int64_t>(gen, 100);
+ }
+
+ // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
+ // Given the parameter v = 1, this gives the following function:
+ // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
+}
+
+TEST_F(RandomDistributionsTest, Gaussian) {
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = absl::Gaussian<double>(gen);
+ }
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(0.0, moments.mean, 0.02);
+ EXPECT_NEAR(1.0, moments.variance, 0.04);
+ EXPECT_NEAR(0, moments.skewness, 0.2);
+ EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
+}
+
+TEST_F(RandomDistributionsTest, LogUniform) {
+ std::vector<double> values(kSize);
+
+ absl::InsecureBitGen gen;
+ for (int i = 0; i < kSize; i++) {
+ values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
+ }
+
+ // The mean is the sum of the fractional means of the uniform distributions:
+ // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
+ // [64..127][128..255][256..511][512..1023]
+ const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
+ 64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
+ (2.0 * 11.0);
+
+ const auto moments =
+ absl::random_internal::ComputeDistributionMoments(values);
+ EXPECT_NEAR(mean, moments.mean, 2) << moments;
+}
+
+} // namespace