summaryrefslogtreecommitdiff
path: root/absl/random/discrete_distribution_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/discrete_distribution_test.cc')
-rw-r--r--absl/random/discrete_distribution_test.cc246
1 files changed, 246 insertions, 0 deletions
diff --git a/absl/random/discrete_distribution_test.cc b/absl/random/discrete_distribution_test.cc
new file mode 100644
index 00000000..7296f0ac
--- /dev/null
+++ b/absl/random/discrete_distribution_test.cc
@@ -0,0 +1,246 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/random/discrete_distribution.h"
+
+#include <cmath>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <numeric>
+#include <random>
+#include <sstream>
+#include <string>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/base/internal/raw_logging.h"
+#include "absl/random/internal/chi_square.h"
+#include "absl/random/internal/distribution_test_util.h"
+#include "absl/random/internal/sequence_urbg.h"
+#include "absl/random/random.h"
+#include "absl/strings/str_cat.h"
+#include "absl/strings/strip.h"
+
+namespace {
+
+template <typename IntType>
+class DiscreteDistributionTypeTest : public ::testing::Test {};
+
+using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
+ uint32_t, int64_t, uint64_t>;
+TYPED_TEST_SUITE(DiscreteDistributionTypeTest, IntTypes);
+
+TYPED_TEST(DiscreteDistributionTypeTest, ParamSerializeTest) {
+ using param_type =
+ typename absl::discrete_distribution<TypeParam>::param_type;
+
+ absl::discrete_distribution<TypeParam> empty;
+ EXPECT_THAT(empty.probabilities(), testing::ElementsAre(1.0));
+
+ absl::discrete_distribution<TypeParam> before({1.0, 2.0, 1.0});
+
+ // Validate that the probabilities sum to 1.0. We picked values which
+ // can be represented exactly to avoid floating-point roundoff error.
+ double s = 0;
+ for (const auto& x : before.probabilities()) {
+ s += x;
+ }
+ EXPECT_EQ(s, 1.0);
+ EXPECT_THAT(before.probabilities(), testing::ElementsAre(0.25, 0.5, 0.25));
+
+ // Validate the same data via an initializer list.
+ {
+ std::vector<double> data({1.0, 2.0, 1.0});
+
+ absl::discrete_distribution<TypeParam> via_param{
+ param_type(std::begin(data), std::end(data))};
+
+ EXPECT_EQ(via_param, before);
+ }
+
+ std::stringstream ss;
+ ss << before;
+ absl::discrete_distribution<TypeParam> after;
+
+ EXPECT_NE(before, after);
+
+ ss >> after;
+
+ EXPECT_EQ(before, after);
+}
+
+TYPED_TEST(DiscreteDistributionTypeTest, Constructor) {
+ auto fn = [](double x) { return x; };
+ {
+ absl::discrete_distribution<int> unary(0, 1.0, 9.0, fn);
+ EXPECT_THAT(unary.probabilities(), testing::ElementsAre(1.0));
+ }
+
+ {
+ absl::discrete_distribution<int> unary(2, 1.0, 9.0, fn);
+ // => fn(1.0 + 0 * 4 + 2) => 3
+ // => fn(1.0 + 1 * 4 + 2) => 7
+ EXPECT_THAT(unary.probabilities(), testing::ElementsAre(0.3, 0.7));
+ }
+}
+
+TEST(DiscreteDistributionTest, InitDiscreteDistribution) {
+ using testing::Pair;
+
+ {
+ std::vector<double> p({1.0, 2.0, 3.0});
+ std::vector<std::pair<double, size_t>> q =
+ absl::random_internal::InitDiscreteDistribution(&p);
+
+ EXPECT_THAT(p, testing::ElementsAre(1 / 6.0, 2 / 6.0, 3 / 6.0));
+
+ // Each bucket is p=1/3, so bucket 0 will send half it's traffic
+ // to bucket 2, while the rest will retain all of their traffic.
+ EXPECT_THAT(q, testing::ElementsAre(Pair(0.5, 2), //
+ Pair(1.0, 1), //
+ Pair(1.0, 2)));
+ }
+
+ {
+ std::vector<double> p({1.0, 2.0, 3.0, 5.0, 2.0});
+
+ std::vector<std::pair<double, size_t>> q =
+ absl::random_internal::InitDiscreteDistribution(&p);
+
+ EXPECT_THAT(p, testing::ElementsAre(1 / 13.0, 2 / 13.0, 3 / 13.0, 5 / 13.0,
+ 2 / 13.0));
+
+ // A more complex bucketing solution: Each bucket has p=0.2
+ // So buckets 0, 1, 4 will send their alternate traffic elsewhere, which
+ // happens to be bucket 3.
+ // However, summing up that alternate traffic gives bucket 3 too much
+ // traffic, so it will send some traffic to bucket 2.
+ constexpr double b0 = 1.0 / 13.0 / 0.2;
+ constexpr double b1 = 2.0 / 13.0 / 0.2;
+ constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
+
+ EXPECT_THAT(q, testing::ElementsAre(Pair(b0, 3), //
+ Pair(b1, 3), //
+ Pair(1.0, 2), //
+ Pair(b3, 2), //
+ Pair(b1, 3)));
+ }
+}
+
+TEST(DiscreteDistributionTest, ChiSquaredTest50) {
+ using absl::random_internal::kChiSquared;
+
+ constexpr size_t kTrials = 10000;
+ constexpr int kBuckets = 50; // inclusive, so actally +1
+
+ // 1-in-100000 threshold, but remember, there are about 8 tests
+ // in this file. And the test could fail for other reasons.
+ // Empirically validated with --runs_per_test=10000.
+ const int kThreshold =
+ absl::random_internal::ChiSquareValue(kBuckets, 0.99999);
+
+ std::vector<double> weights(kBuckets, 0);
+ std::iota(std::begin(weights), std::end(weights), 1);
+ absl::discrete_distribution<int> dist(std::begin(weights), std::end(weights));
+
+ absl::InsecureBitGen rng;
+
+ std::vector<int32_t> counts(kBuckets, 0);
+ for (size_t i = 0; i < kTrials; i++) {
+ auto x = dist(rng);
+ counts[x]++;
+ }
+
+ // Scale weights.
+ double sum = 0;
+ for (double x : weights) {
+ sum += x;
+ }
+ for (double& x : weights) {
+ x = kTrials * (x / sum);
+ }
+
+ double chi_square =
+ absl::random_internal::ChiSquare(std::begin(counts), std::end(counts),
+ std::begin(weights), std::end(weights));
+
+ if (chi_square > kThreshold) {
+ double p_value =
+ absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
+
+ // Chi-squared test failed. Output does not appear to be uniform.
+ std::string msg;
+ for (size_t i = 0; i < counts.size(); i++) {
+ absl::StrAppend(&msg, i, ": ", counts[i], " vs ", weights[i], "\n");
+ }
+ absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
+ absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
+ kThreshold);
+ ABSL_RAW_LOG(INFO, "%s", msg.c_str());
+ FAIL() << msg;
+ }
+}
+
+TEST(DiscreteDistributionTest, StabilityTest) {
+ // absl::discrete_distribution stabilitiy relies on
+ // absl::uniform_int_distribution and absl::bernoulli_distribution.
+ absl::random_internal::sequence_urbg urbg(
+ {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
+ 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
+ 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
+ 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
+
+ std::vector<int> output(6);
+
+ {
+ absl::discrete_distribution<int32_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
+ EXPECT_EQ(0, dist.min());
+ EXPECT_EQ(4, dist.max());
+ for (auto& v : output) {
+ v = dist(urbg);
+ }
+ EXPECT_EQ(12, urbg.invocations());
+ }
+
+ // With 12 calls to urbg, each call into discrete_distribution consumes
+ // precisely 2 values: one for the uniform call, and a second for the
+ // bernoulli.
+ //
+ // Given the alt mapping: 0=>3, 1=>3, 2=>2, 3=>2, 4=>3, we can
+ //
+ // uniform: 443210143131
+ // bernoulli: b0 000011100101
+ // bernoulli: b1 001111101101
+ // bernoulli: b2 111111111111
+ // bernoulli: b3 001111101111
+ // bernoulli: b4 001111101101
+ // ...
+ EXPECT_THAT(output, testing::ElementsAre(3, 3, 1, 3, 3, 3));
+
+ {
+ urbg.reset();
+ absl::discrete_distribution<int64_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
+ EXPECT_EQ(0, dist.min());
+ EXPECT_EQ(4, dist.max());
+ for (auto& v : output) {
+ v = dist(urbg);
+ }
+ EXPECT_EQ(12, urbg.invocations());
+ }
+ EXPECT_THAT(output, testing::ElementsAre(3, 3, 0, 3, 0, 4));
+}
+
+} // namespace