summaryrefslogtreecommitdiff
path: root/absl/random/bernoulli_distribution_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/bernoulli_distribution_test.cc')
-rw-r--r--absl/random/bernoulli_distribution_test.cc213
1 files changed, 213 insertions, 0 deletions
diff --git a/absl/random/bernoulli_distribution_test.cc b/absl/random/bernoulli_distribution_test.cc
new file mode 100644
index 00000000..f2c3b99c
--- /dev/null
+++ b/absl/random/bernoulli_distribution_test.cc
@@ -0,0 +1,213 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/random/bernoulli_distribution.h"
+
+#include <cmath>
+#include <cstddef>
+#include <random>
+#include <sstream>
+#include <utility>
+
+#include "gtest/gtest.h"
+#include "absl/random/internal/sequence_urbg.h"
+#include "absl/random/random.h"
+
+namespace {
+
+class BernoulliTest : public testing::TestWithParam<std::pair<double, size_t>> {
+};
+
+TEST_P(BernoulliTest, Serialize) {
+ const double d = GetParam().first;
+ absl::bernoulli_distribution before(d);
+
+ {
+ absl::bernoulli_distribution via_param{
+ absl::bernoulli_distribution::param_type(d)};
+ EXPECT_EQ(via_param, before);
+ }
+
+ std::stringstream ss;
+ ss << before;
+ absl::bernoulli_distribution after(0.6789);
+
+ EXPECT_NE(before.p(), after.p());
+ EXPECT_NE(before.param(), after.param());
+ EXPECT_NE(before, after);
+
+ ss >> after;
+
+ EXPECT_EQ(before.p(), after.p());
+ EXPECT_EQ(before.param(), after.param());
+ EXPECT_EQ(before, after);
+}
+
+TEST_P(BernoulliTest, Accuracy) {
+ // Sadly, the claim to fame for this implementation is precise accuracy, which
+ // is very, very hard to measure, the improvements come as trials approach the
+ // limit of double accuracy; thus the outcome differs from the
+ // std::bernoulli_distribution with a probability of approximately 1 in 2^-53.
+ const std::pair<double, size_t> para = GetParam();
+ size_t trials = para.second;
+ double p = para.first;
+
+ absl::InsecureBitGen rng;
+
+ size_t yes = 0;
+ absl::bernoulli_distribution dist(p);
+ for (size_t i = 0; i < trials; ++i) {
+ if (dist(rng)) yes++;
+ }
+
+ // Compute the distribution parameters for a binomial test, using a normal
+ // approximation for the confidence interval, as there are a sufficiently
+ // large number of trials that the central limit theorem applies.
+ const double stddev_p = std::sqrt((p * (1.0 - p)) / trials);
+ const double expected = trials * p;
+ const double stddev = trials * stddev_p;
+
+ // 5 sigma, approved by Richard Feynman
+ EXPECT_NEAR(yes, expected, 5 * stddev)
+ << "@" << p << ", "
+ << std::abs(static_cast<double>(yes) - expected) / stddev << " stddev";
+}
+
+// There must be many more trials to make the mean approximately normal for `p`
+// closes to 0 or 1.
+INSTANTIATE_TEST_SUITE_P(
+ All, BernoulliTest,
+ ::testing::Values(
+ // Typical values.
+ std::make_pair(0, 30000), std::make_pair(1e-3, 30000000),
+ std::make_pair(0.1, 3000000), std::make_pair(0.5, 3000000),
+ std::make_pair(0.9, 30000000), std::make_pair(0.999, 30000000),
+ std::make_pair(1, 30000),
+ // Boundary cases.
+ std::make_pair(std::nextafter(1.0, 0.0), 1), // ~1 - epsilon
+ std::make_pair(std::numeric_limits<double>::epsilon(), 1),
+ std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
+ 1.0), // min + epsilon
+ 1),
+ std::make_pair(std::numeric_limits<double>::min(), // smallest normal
+ 1),
+ std::make_pair(
+ std::numeric_limits<double>::denorm_min(), // smallest denorm
+ 1),
+ std::make_pair(std::numeric_limits<double>::min() / 2, 1), // denorm
+ std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
+ 0.0), // denorm_max
+ 1)));
+
+// NOTE: absl::bernoulli_distribution is not guaranteed to be stable.
+TEST(BernoulliTest, StabilityTest) {
+ // absl::bernoulli_distribution stability relies on FastUniformBits and
+ // integer arithmetic.
+ absl::random_internal::sequence_urbg urbg({
+ 0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
+ 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
+ 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
+ 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull,
+ 0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull,
+ 0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull,
+ 0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull,
+ 0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full,
+ 0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull,
+ 0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull,
+ 0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull,
+ 0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull,
+ 0xe3fd722dc65ad09eull, 0x5a14fd21ea2a5705ull, 0x14e6ea4d6edb0c73ull,
+ 0x275b0dc7e0a18acfull, 0x36cebe0d2653682eull, 0x0361e9b23861596bull,
+ });
+
+ // Generate a std::string of '0' and '1' for the distribution output.
+ auto generate = [&urbg](absl::bernoulli_distribution& dist) {
+ std::string output;
+ output.reserve(36);
+ urbg.reset();
+ for (int i = 0; i < 35; i++) {
+ output.append(dist(urbg) ? "1" : "0");
+ }
+ return output;
+ };
+
+ const double kP = 0.0331289862362;
+ {
+ absl::bernoulli_distribution dist(kP);
+ auto v = generate(dist);
+ EXPECT_EQ(35, urbg.invocations());
+ EXPECT_EQ(v, "00000000000010000000000010000000000") << dist;
+ }
+ {
+ absl::bernoulli_distribution dist(kP * 10.0);
+ auto v = generate(dist);
+ EXPECT_EQ(35, urbg.invocations());
+ EXPECT_EQ(v, "00000100010010010010000011000011010") << dist;
+ }
+ {
+ absl::bernoulli_distribution dist(kP * 20.0);
+ auto v = generate(dist);
+ EXPECT_EQ(35, urbg.invocations());
+ EXPECT_EQ(v, "00011110010110110011011111110111011") << dist;
+ }
+ {
+ absl::bernoulli_distribution dist(1.0 - kP);
+ auto v = generate(dist);
+ EXPECT_EQ(35, urbg.invocations());
+ EXPECT_EQ(v, "11111111111111111111011111111111111") << dist;
+ }
+}
+
+TEST(BernoulliTest, StabilityTest2) {
+ absl::random_internal::sequence_urbg urbg(
+ {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
+ 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
+ 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
+ 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
+
+ // Generate a std::string of '0' and '1' for the distribution output.
+ auto generate = [&urbg](absl::bernoulli_distribution& dist) {
+ std::string output;
+ output.reserve(13);
+ urbg.reset();
+ for (int i = 0; i < 12; i++) {
+ output.append(dist(urbg) ? "1" : "0");
+ }
+ return output;
+ };
+
+ constexpr double b0 = 1.0 / 13.0 / 0.2;
+ constexpr double b1 = 2.0 / 13.0 / 0.2;
+ constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
+ {
+ absl::bernoulli_distribution dist(b0);
+ auto v = generate(dist);
+ EXPECT_EQ(12, urbg.invocations());
+ EXPECT_EQ(v, "000011100101") << dist;
+ }
+ {
+ absl::bernoulli_distribution dist(b1);
+ auto v = generate(dist);
+ EXPECT_EQ(12, urbg.invocations());
+ EXPECT_EQ(v, "001111101101") << dist;
+ }
+ {
+ absl::bernoulli_distribution dist(b3);
+ auto v = generate(dist);
+ EXPECT_EQ(12, urbg.invocations());
+ EXPECT_EQ(v, "001111101111") << dist;
+ }
+}
+
+} // namespace