summaryrefslogtreecommitdiff
path: root/absl/random/bernoulli_distribution.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/bernoulli_distribution.h')
-rw-r--r--absl/random/bernoulli_distribution.h200
1 files changed, 200 insertions, 0 deletions
diff --git a/absl/random/bernoulli_distribution.h b/absl/random/bernoulli_distribution.h
new file mode 100644
index 00000000..0afc2c14
--- /dev/null
+++ b/absl/random/bernoulli_distribution.h
@@ -0,0 +1,200 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_
+#define ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_
+
+#include <cstdint>
+#include <istream>
+#include <limits>
+
+#include "absl/base/optimization.h"
+#include "absl/random/internal/fast_uniform_bits.h"
+#include "absl/random/internal/iostream_state_saver.h"
+
+namespace absl {
+inline namespace lts_2019_08_08 {
+
+// absl::bernoulli_distribution is a drop in replacement for
+// std::bernoulli_distribution. It guarantees that (given a perfect
+// UniformRandomBitGenerator) the acceptance probability is *exactly* equal to
+// the given double.
+//
+// The implementation assumes that double is IEEE754
+class bernoulli_distribution {
+ public:
+ using result_type = bool;
+
+ class param_type {
+ public:
+ using distribution_type = bernoulli_distribution;
+
+ explicit param_type(double p = 0.5) : prob_(p) {
+ assert(p >= 0.0 && p <= 1.0);
+ }
+
+ double p() const { return prob_; }
+
+ friend bool operator==(const param_type& p1, const param_type& p2) {
+ return p1.p() == p2.p();
+ }
+ friend bool operator!=(const param_type& p1, const param_type& p2) {
+ return p1.p() != p2.p();
+ }
+
+ private:
+ double prob_;
+ };
+
+ bernoulli_distribution() : bernoulli_distribution(0.5) {}
+
+ explicit bernoulli_distribution(double p) : param_(p) {}
+
+ explicit bernoulli_distribution(param_type p) : param_(p) {}
+
+ // no-op
+ void reset() {}
+
+ template <typename URBG>
+ bool operator()(URBG& g) { // NOLINT(runtime/references)
+ return Generate(param_.p(), g);
+ }
+
+ template <typename URBG>
+ bool operator()(URBG& g, // NOLINT(runtime/references)
+ const param_type& param) {
+ return Generate(param.p(), g);
+ }
+
+ param_type param() const { return param_; }
+ void param(const param_type& param) { param_ = param; }
+
+ double p() const { return param_.p(); }
+
+ result_type(min)() const { return false; }
+ result_type(max)() const { return true; }
+
+ friend bool operator==(const bernoulli_distribution& d1,
+ const bernoulli_distribution& d2) {
+ return d1.param_ == d2.param_;
+ }
+
+ friend bool operator!=(const bernoulli_distribution& d1,
+ const bernoulli_distribution& d2) {
+ return d1.param_ != d2.param_;
+ }
+
+ private:
+ static constexpr uint64_t kP32 = static_cast<uint64_t>(1) << 32;
+
+ template <typename URBG>
+ static bool Generate(double p, URBG& g); // NOLINT(runtime/references)
+
+ param_type param_;
+};
+
+template <typename CharT, typename Traits>
+std::basic_ostream<CharT, Traits>& operator<<(
+ std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
+ const bernoulli_distribution& x) {
+ auto saver = random_internal::make_ostream_state_saver(os);
+ os.precision(random_internal::stream_precision_helper<double>::kPrecision);
+ os << x.p();
+ return os;
+}
+
+template <typename CharT, typename Traits>
+std::basic_istream<CharT, Traits>& operator>>(
+ std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
+ bernoulli_distribution& x) { // NOLINT(runtime/references)
+ auto saver = random_internal::make_istream_state_saver(is);
+ auto p = random_internal::read_floating_point<double>(is);
+ if (!is.fail()) {
+ x.param(bernoulli_distribution::param_type(p));
+ }
+ return is;
+}
+
+template <typename URBG>
+bool bernoulli_distribution::Generate(double p,
+ URBG& g) { // NOLINT(runtime/references)
+ random_internal::FastUniformBits<uint32_t> fast_u32;
+
+ while (true) {
+ // There are two aspects of the definition of `c` below that are worth
+ // commenting on. First, because `p` is in the range [0, 1], `c` is in the
+ // range [0, 2^32] which does not fit in a uint32_t and therefore requires
+ // 64 bits.
+ //
+ // Second, `c` is constructed by first casting explicitly to a signed
+ // integer and then converting implicitly to an unsigned integer of the same
+ // size. This is done because the hardware conversion instructions produce
+ // signed integers from double; if taken as a uint64_t the conversion would
+ // be wrong for doubles greater than 2^63 (not relevant in this use-case).
+ // If converted directly to an unsigned integer, the compiler would end up
+ // emitting code to handle such large values that are not relevant due to
+ // the known bounds on `c`. To avoid these extra instructions this
+ // implementation converts first to the signed type and then use the
+ // implicit conversion to unsigned (which is a no-op).
+ const uint64_t c = static_cast<int64_t>(p * kP32);
+ const uint32_t v = fast_u32(g);
+ // FAST PATH: this path fails with probability 1/2^32. Note that simply
+ // returning v <= c would approximate P very well (up to an absolute error
+ // of 1/2^32); the slow path (taken in that range of possible error, in the
+ // case of equality) eliminates the remaining error.
+ if (ABSL_PREDICT_TRUE(v != c)) return v < c;
+
+ // It is guaranteed that `q` is strictly less than 1, because if `q` were
+ // greater than or equal to 1, the same would be true for `p`. Certainly `p`
+ // cannot be greater than 1, and if `p == 1`, then the fast path would
+ // necessary have been taken already.
+ const double q = static_cast<double>(c) / kP32;
+
+ // The probability of acceptance on the fast path is `q` and so the
+ // probability of acceptance here should be `p - q`.
+ //
+ // Note that `q` is obtained from `p` via some shifts and conversions, the
+ // upshot of which is that `q` is simply `p` with some of the
+ // least-significant bits of its mantissa set to zero. This means that the
+ // difference `p - q` will not have any rounding errors. To see why, pretend
+ // that double has 10 bits of resolution and q is obtained from `p` in such
+ // a way that the 4 least-significant bits of its mantissa are set to zero.
+ // For example:
+ // p = 1.1100111011 * 2^-1
+ // q = 1.1100110000 * 2^-1
+ // p - q = 1.011 * 2^-8
+ // The difference `p - q` has exactly the nonzero mantissa bits that were
+ // "lost" in `q` producing a number which is certainly representable in a
+ // double.
+ const double left = p - q;
+
+ // By construction, the probability of being on this slow path is 1/2^32, so
+ // P(accept in slow path) = P(accept| in slow path) * P(slow path),
+ // which means the probability of acceptance here is `1 / (left * kP32)`:
+ const double here = left * kP32;
+
+ // The simplest way to compute the result of this trial is to repeat the
+ // whole algorithm with the new probability. This terminates because even
+ // given arbitrarily unfriendly "random" bits, each iteration either
+ // multiplies a tiny probability by 2^32 (if c == 0) or strips off some
+ // number of nonzero mantissa bits. That process is bounded.
+ if (here == 0) return false;
+ p = here;
+ }
+}
+
+} // inline namespace lts_2019_08_08
+} // namespace absl
+
+#endif // ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_