diff options
Diffstat (limited to 'absl/profiling/internal')
-rw-r--r-- | absl/profiling/internal/exponential_biased.cc | 93 | ||||
-rw-r--r-- | absl/profiling/internal/exponential_biased.h | 130 | ||||
-rw-r--r-- | absl/profiling/internal/exponential_biased_test.cc | 199 | ||||
-rw-r--r-- | absl/profiling/internal/periodic_sampler.cc | 53 | ||||
-rw-r--r-- | absl/profiling/internal/periodic_sampler.h | 211 | ||||
-rw-r--r-- | absl/profiling/internal/periodic_sampler_benchmark.cc | 79 | ||||
-rw-r--r-- | absl/profiling/internal/periodic_sampler_test.cc | 177 |
7 files changed, 942 insertions, 0 deletions
diff --git a/absl/profiling/internal/exponential_biased.cc b/absl/profiling/internal/exponential_biased.cc new file mode 100644 index 00000000..81d9a757 --- /dev/null +++ b/absl/profiling/internal/exponential_biased.cc @@ -0,0 +1,93 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/profiling/internal/exponential_biased.h" + +#include <stdint.h> + +#include <algorithm> +#include <atomic> +#include <cmath> +#include <limits> + +#include "absl/base/attributes.h" +#include "absl/base/optimization.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace profiling_internal { + +// The algorithm generates a random number between 0 and 1 and applies the +// inverse cumulative distribution function for an exponential. Specifically: +// Let m be the inverse of the sample period, then the probability +// distribution function is m*exp(-mx) so the CDF is +// p = 1 - exp(-mx), so +// q = 1 - p = exp(-mx) +// log_e(q) = -mx +// -log_e(q)/m = x +// log_2(q) * (-log_e(2) * 1/m) = x +// In the code, q is actually in the range 1 to 2**26, hence the -26 below +int64_t ExponentialBiased::GetSkipCount(int64_t mean) { + if (ABSL_PREDICT_FALSE(!initialized_)) { + Initialize(); + } + + uint64_t rng = NextRandom(rng_); + rng_ = rng; + + // Take the top 26 bits as the random number + // (This plus the 1<<58 sampling bound give a max possible step of + // 5194297183973780480 bytes.) + // The uint32_t cast is to prevent a (hard-to-reproduce) NAN + // under piii debug for some binaries. + double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0; + // Put the computed p-value through the CDF of a geometric. + double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean); + // Very large values of interval overflow int64_t. To avoid that, we will + // cheat and clamp any huge values to (int64_t max)/2. This is a potential + // source of bias, but the mean would need to be such a large value that it's + // not likely to come up. For example, with a mean of 1e18, the probability of + // hitting this condition is about 1/1000. For a mean of 1e17, standard + // calculators claim that this event won't happen. + if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) { + // Assume huge values are bias neutral, retain bias for next call. + return std::numeric_limits<int64_t>::max() / 2; + } + double value = std::rint(interval); + bias_ = interval - value; + return value; +} + +int64_t ExponentialBiased::GetStride(int64_t mean) { + return GetSkipCount(mean - 1) + 1; +} + +void ExponentialBiased::Initialize() { + // We don't get well distributed numbers from `this` so we call NextRandom() a + // bunch to mush the bits around. We use a global_rand to handle the case + // where the same thread (by memory address) gets created and destroyed + // repeatedly. + ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0); + uint64_t r = reinterpret_cast<uint64_t>(this) + + global_rand.fetch_add(1, std::memory_order_relaxed); + for (int i = 0; i < 20; ++i) { + r = NextRandom(r); + } + rng_ = r; + initialized_ = true; +} + +} // namespace profiling_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/absl/profiling/internal/exponential_biased.h b/absl/profiling/internal/exponential_biased.h new file mode 100644 index 00000000..d31f7782 --- /dev/null +++ b/absl/profiling/internal/exponential_biased.h @@ -0,0 +1,130 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_ +#define ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_ + +#include <stdint.h> + +#include "absl/base/config.h" +#include "absl/base/macros.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace profiling_internal { + +// ExponentialBiased provides a small and fast random number generator for a +// rounded exponential distribution. This generator manages very little state, +// and imposes no synchronization overhead. This makes it useful in specialized +// scenarios requiring minimum overhead, such as stride based periodic sampling. +// +// ExponentialBiased provides two closely related functions, GetSkipCount() and +// GetStride(), both returning a rounded integer defining a number of events +// required before some event with a given mean probability occurs. +// +// The distribution is useful to generate a random wait time or some periodic +// event with a given mean probability. For example, if an action is supposed to +// happen on average once every 'N' events, then we can get a random 'stride' +// counting down how long before the event to happen. For example, if we'd want +// to sample one in every 1000 'Frobber' calls, our code could look like this: +// +// Frobber::Frobber() { +// stride_ = exponential_biased_.GetStride(1000); +// } +// +// void Frobber::Frob(int arg) { +// if (--stride == 0) { +// SampleFrob(arg); +// stride_ = exponential_biased_.GetStride(1000); +// } +// ... +// } +// +// The rounding of the return value creates a bias, especially for smaller means +// where the distribution of the fraction is not evenly distributed. We correct +// this bias by tracking the fraction we rounded up or down on each iteration, +// effectively tracking the distance between the cumulative value, and the +// rounded cumulative value. For example, given a mean of 2: +// +// raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923 +// raw = 0.14624, cumulative = 1.77701, rounded = 2, bias = 0.14624 +// raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805 +// raw = 0.24206, cumulative = 6.95101, rounded = 7, bias = 0.24206 +// etc... +// +// Adjusting with rounding bias is relatively trivial: +// +// double value = bias_ + exponential_distribution(mean)(); +// double rounded_value = std::rint(value); +// bias_ = value - rounded_value; +// return rounded_value; +// +// This class is thread-compatible. +class ExponentialBiased { + public: + // The number of bits set by NextRandom. + static constexpr int kPrngNumBits = 48; + + // `GetSkipCount()` returns the number of events to skip before some chosen + // event happens. For example, randomly tossing a coin, we will on average + // throw heads once before we get tails. We can simulate random coin tosses + // using GetSkipCount() as: + // + // ExponentialBiased eb; + // for (...) { + // int number_of_heads_before_tail = eb.GetSkipCount(1); + // for (int flips = 0; flips < number_of_heads_before_tail; ++flips) { + // printf("head..."); + // } + // printf("tail\n"); + // } + // + int64_t GetSkipCount(int64_t mean); + + // GetStride() returns the number of events required for a specific event to + // happen. See the class comments for a usage example. `GetStride()` is + // equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or + // `GetSkipCount()` depends mostly on what best fits the use case. + int64_t GetStride(int64_t mean); + + // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1] + // + // This is public to enable testing. + static uint64_t NextRandom(uint64_t rnd); + + private: + void Initialize(); + + uint64_t rng_{0}; + double bias_{0}; + bool initialized_{false}; +}; + +// Returns the next prng value. +// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 +// This is the lrand64 generator. +inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) { + const uint64_t prng_mult = uint64_t{0x5DEECE66D}; + const uint64_t prng_add = 0xB; + const uint64_t prng_mod_power = 48; + const uint64_t prng_mod_mask = + ~((~static_cast<uint64_t>(0)) << prng_mod_power); + return (prng_mult * rnd + prng_add) & prng_mod_mask; +} + +} // namespace profiling_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_ diff --git a/absl/profiling/internal/exponential_biased_test.cc b/absl/profiling/internal/exponential_biased_test.cc new file mode 100644 index 00000000..5675001d --- /dev/null +++ b/absl/profiling/internal/exponential_biased_test.cc @@ -0,0 +1,199 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/profiling/internal/exponential_biased.h" + +#include <stddef.h> + +#include <cmath> +#include <cstdint> +#include <vector> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/strings/str_cat.h" + +using ::testing::Ge; + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace profiling_internal { + +MATCHER_P2(IsBetween, a, b, + absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a, + " and ", b)) { + return a <= arg && arg <= b; +} + +// Tests of the quality of the random numbers generated +// This uses the Anderson Darling test for uniformity. +// See "Evaluating the Anderson-Darling Distribution" by Marsaglia +// for details. + +// Short cut version of ADinf(z), z>0 (from Marsaglia) +// This returns the p-value for Anderson Darling statistic in +// the limit as n-> infinity. For finite n, apply the error fix below. +double AndersonDarlingInf(double z) { + if (z < 2) { + return exp(-1.2337141 / z) / sqrt(z) * + (2.00012 + + (0.247105 - + (0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) * + z) * + z); + } + return exp( + -exp(1.0776 - + (2.30695 - + (0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) * + z)); +} + +// Corrects the approximation error in AndersonDarlingInf for small values of n +// Add this to AndersonDarlingInf to get a better approximation +// (from Marsaglia) +double AndersonDarlingErrFix(int n, double x) { + if (x > 0.8) { + return (-130.2137 + + (745.2337 - + (1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) * + x) / + n; + } + double cutoff = 0.01265 + 0.1757 / n; + if (x < cutoff) { + double t = x / cutoff; + t = sqrt(t) * (1 - t) * (49 * t - 102); + return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n; + } else { + double t = (x - cutoff) / (0.8 - cutoff); + t = -0.00022633 + + (6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) * + t; + return t * (0.04213 + 0.01365 / n) / n; + } +} + +// Returns the AndersonDarling p-value given n and the value of the statistic +double AndersonDarlingPValue(int n, double z) { + double ad = AndersonDarlingInf(z); + double errfix = AndersonDarlingErrFix(n, ad); + return ad + errfix; +} + +double AndersonDarlingStatistic(const std::vector<double>& random_sample) { + int n = random_sample.size(); + double ad_sum = 0; + for (int i = 0; i < n; i++) { + ad_sum += (2 * i + 1) * + std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); + } + double ad_statistic = -n - 1 / static_cast<double>(n) * ad_sum; + return ad_statistic; +} + +// Tests if the array of doubles is uniformly distributed. +// Returns the p-value of the Anderson Darling Statistic +// for the given set of sorted random doubles +// See "Evaluating the Anderson-Darling Distribution" by +// Marsaglia and Marsaglia for details. +double AndersonDarlingTest(const std::vector<double>& random_sample) { + double ad_statistic = AndersonDarlingStatistic(random_sample); + double p = AndersonDarlingPValue(random_sample.size(), ad_statistic); + return p; +} + +TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) { + ExponentialBiased eb; + for (int runs = 0; runs < 10; ++runs) { + for (int flips = eb.GetSkipCount(1); flips > 0; --flips) { + printf("head..."); + } + printf("tail\n"); + } + int heads = 0; + for (int i = 0; i < 10000000; i += 1 + eb.GetSkipCount(1)) { + ++heads; + } + printf("Heads = %d (%f%%)\n", heads, 100.0 * heads / 10000000); +} + +TEST(ExponentialBiasedTest, SampleDemoWithStride) { + ExponentialBiased eb; + int stride = eb.GetStride(10); + int samples = 0; + for (int i = 0; i < 10000000; ++i) { + if (--stride == 0) { + ++samples; + stride = eb.GetStride(10); + } + } + printf("Samples = %d (%f%%)\n", samples, 100.0 * samples / 10000000); +} + + +// Testing that NextRandom generates uniform random numbers. Applies the +// Anderson-Darling test for uniformity +TEST(ExponentialBiasedTest, TestNextRandom) { + for (auto n : std::vector<int>({ + 10, // Check short-range correlation + 100, 1000, + 10000 // Make sure there's no systemic error + })) { + uint64_t x = 1; + // This assumes that the prng returns 48 bit numbers + uint64_t max_prng_value = static_cast<uint64_t>(1) << 48; + // Initialize. + for (int i = 1; i <= 20; i++) { + x = ExponentialBiased::NextRandom(x); + } + std::vector<uint64_t> int_random_sample(n); + // Collect samples + for (int i = 0; i < n; i++) { + int_random_sample[i] = x; + x = ExponentialBiased::NextRandom(x); + } + // First sort them... + std::sort(int_random_sample.begin(), int_random_sample.end()); + std::vector<double> random_sample(n); + // Convert them to uniform randoms (in the range [0,1]) + for (int i = 0; i < n; i++) { + random_sample[i] = + static_cast<double>(int_random_sample[i]) / max_prng_value; + } + // Now compute the Anderson-Darling statistic + double ad_pvalue = AndersonDarlingTest(random_sample); + EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001) + << "prng is not uniform: n = " << n << " p = " << ad_pvalue; + } +} + +// The generator needs to be available as a thread_local and as a static +// variable. +TEST(ExponentialBiasedTest, InitializationModes) { + ABSL_CONST_INIT static ExponentialBiased eb_static; + EXPECT_THAT(eb_static.GetSkipCount(2), Ge(0)); + +#ifdef ABSL_HAVE_THREAD_LOCAL + thread_local ExponentialBiased eb_thread; + EXPECT_THAT(eb_thread.GetSkipCount(2), Ge(0)); +#endif + + ExponentialBiased eb_stack; + EXPECT_THAT(eb_stack.GetSkipCount(2), Ge(0)); +} + +} // namespace profiling_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/absl/profiling/internal/periodic_sampler.cc b/absl/profiling/internal/periodic_sampler.cc new file mode 100644 index 00000000..a738a82c --- /dev/null +++ b/absl/profiling/internal/periodic_sampler.cc @@ -0,0 +1,53 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/profiling/internal/periodic_sampler.h" + +#include <atomic> + +#include "absl/profiling/internal/exponential_biased.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace profiling_internal { + +int64_t PeriodicSamplerBase::GetExponentialBiased(int period) noexcept { + return rng_.GetStride(period); +} + +bool PeriodicSamplerBase::SubtleConfirmSample() noexcept { + int current_period = period(); + + // Deal with period case 0 (always off) and 1 (always on) + if (ABSL_PREDICT_FALSE(current_period < 2)) { + stride_ = 0; + return current_period == 1; + } + + // Check if this is the first call to Sample() + if (ABSL_PREDICT_FALSE(stride_ == 1)) { + stride_ = static_cast<uint64_t>(-GetExponentialBiased(current_period)); + if (static_cast<int64_t>(stride_) < -1) { + ++stride_; + return false; + } + } + + stride_ = static_cast<uint64_t>(-GetExponentialBiased(current_period)); + return true; +} + +} // namespace profiling_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/absl/profiling/internal/periodic_sampler.h b/absl/profiling/internal/periodic_sampler.h new file mode 100644 index 00000000..54f0af45 --- /dev/null +++ b/absl/profiling/internal/periodic_sampler.h @@ -0,0 +1,211 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef ABSL_PROFILING_INTERNAL_PERIODIC_SAMPLER_H_ +#define ABSL_PROFILING_INTERNAL_PERIODIC_SAMPLER_H_ + +#include <stdint.h> + +#include <atomic> + +#include "absl/base/optimization.h" +#include "absl/profiling/internal/exponential_biased.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace profiling_internal { + +// PeriodicSamplerBase provides the basic period sampler implementation. +// +// This is the base class for the templated PeriodicSampler class, which holds +// a global std::atomic value identified by a user defined tag, such that +// each specific PeriodSampler implementation holds its own global period. +// +// PeriodicSamplerBase is thread-compatible except where stated otherwise. +class PeriodicSamplerBase { + public: + // PeriodicSamplerBase is trivial / copyable / movable / destructible. + PeriodicSamplerBase() = default; + PeriodicSamplerBase(PeriodicSamplerBase&&) = default; + PeriodicSamplerBase(const PeriodicSamplerBase&) = default; + + // Returns true roughly once every `period` calls. This is established by a + // randomly picked `stride` that is counted down on each call to `Sample`. + // This stride is picked such that the probability of `Sample()` returning + // true is 1 in `period`. + inline bool Sample() noexcept; + + // The below methods are intended for optimized use cases where the + // size of the inlined fast path code is highly important. Applications + // should use the `Sample()` method unless they have proof that their + // specific use case requires the optimizations offered by these methods. + // + // An example of such a use case is SwissTable sampling. All sampling checks + // are in inlined SwissTable methods, and the number of call sites is huge. + // In this case, the inlined code size added to each translation unit calling + // SwissTable methods is non-trivial. + // + // The `SubtleMaybeSample()` function spuriously returns true even if the + // function should not be sampled, applications MUST match each call to + // 'SubtleMaybeSample()' returning true with a `SubtleConfirmSample()` call, + // and use the result of the latter as the sampling decision. + // In other words: the code should logically be equivalent to: + // + // if (SubtleMaybeSample() && SubtleConfirmSample()) { + // // Sample this call + // } + // + // In the 'inline-size' optimized case, the `SubtleConfirmSample()` call can + // be placed out of line, for example, the typical use case looks as follows: + // + // // --- frobber.h ----------- + // void FrobberSampled(); + // + // inline void FrobberImpl() { + // // ... + // } + // + // inline void Frobber() { + // if (ABSL_PREDICT_FALSE(sampler.SubtleMaybeSample())) { + // FrobberSampled(); + // } else { + // FrobberImpl(); + // } + // } + // + // // --- frobber.cc ----------- + // void FrobberSampled() { + // if (!sampler.SubtleConfirmSample())) { + // // Spurious false positive + // FrobberImpl(); + // return; + // } + // + // // Sampled execution + // // ... + // } + inline bool SubtleMaybeSample() noexcept; + bool SubtleConfirmSample() noexcept; + + protected: + // We explicitly don't use a virtual destructor as this class is never + // virtually destroyed, and it keeps the class trivial, which avoids TLS + // prologue and epilogue code for our TLS instances. + ~PeriodicSamplerBase() = default; + + // Returns the next stride for our sampler. + // This function is virtual for testing purposes only. + virtual int64_t GetExponentialBiased(int period) noexcept; + + private: + // Returns the current period of this sampler. Thread-safe. + virtual int period() const noexcept = 0; + + // Keep and decrement stride_ as an unsigned integer, but compare the value + // to zero casted as a signed int. clang and msvc do not create optimum code + // if we use signed for the combined decrement and sign comparison. + // + // Below 3 alternative options, all compiles generate the best code + // using the unsigned increment <---> signed int comparison option. + // + // Option 1: + // int64_t stride_; + // if (ABSL_PREDICT_TRUE(++stride_ < 0)) { ... } + // + // GCC x64 (OK) : https://gcc.godbolt.org/z/R5MzzA + // GCC ppc (OK) : https://gcc.godbolt.org/z/z7NZAt + // Clang x64 (BAD): https://gcc.godbolt.org/z/t4gPsd + // ICC x64 (OK) : https://gcc.godbolt.org/z/rE6s8W + // MSVC x64 (OK) : https://gcc.godbolt.org/z/ARMXqS + // + // Option 2: + // int64_t stride_ = 0; + // if (ABSL_PREDICT_TRUE(--stride_ >= 0)) { ... } + // + // GCC x64 (OK) : https://gcc.godbolt.org/z/jSQxYK + // GCC ppc (OK) : https://gcc.godbolt.org/z/VJdYaA + // Clang x64 (BAD): https://gcc.godbolt.org/z/Xm4NjX + // ICC x64 (OK) : https://gcc.godbolt.org/z/4snaFd + // MSVC x64 (BAD): https://gcc.godbolt.org/z/BgnEKE + // + // Option 3: + // uint64_t stride_; + // if (ABSL_PREDICT_TRUE(static_cast<int64_t>(++stride_) < 0)) { ... } + // + // GCC x64 (OK) : https://gcc.godbolt.org/z/bFbfPy + // GCC ppc (OK) : https://gcc.godbolt.org/z/S9KkUE + // Clang x64 (OK) : https://gcc.godbolt.org/z/UYzRb4 + // ICC x64 (OK) : https://gcc.godbolt.org/z/ptTNfD + // MSVC x64 (OK) : https://gcc.godbolt.org/z/76j4-5 + uint64_t stride_ = 0; + absl::profiling_internal::ExponentialBiased rng_; +}; + +inline bool PeriodicSamplerBase::SubtleMaybeSample() noexcept { + // See comments on `stride_` for the unsigned increment / signed compare. + if (ABSL_PREDICT_TRUE(static_cast<int64_t>(++stride_) < 0)) { + return false; + } + return true; +} + +inline bool PeriodicSamplerBase::Sample() noexcept { + return ABSL_PREDICT_FALSE(SubtleMaybeSample()) ? SubtleConfirmSample() + : false; +} + +// PeriodicSampler is a concreted periodic sampler implementation. +// The user provided Tag identifies the implementation, and is required to +// isolate the global state of this instance from other instances. +// +// Typical use case: +// +// struct HashTablezTag {}; +// thread_local PeriodicSampler sampler; +// +// void HashTableSamplingLogic(...) { +// if (sampler.Sample()) { +// HashTableSlowSamplePath(...); +// } +// } +// +template <typename Tag, int default_period = 0> +class PeriodicSampler final : public PeriodicSamplerBase { + public: + ~PeriodicSampler() = default; + + int period() const noexcept final { + return period_.load(std::memory_order_relaxed); + } + + // Sets the global period for this sampler. Thread-safe. + // Setting a period of 0 disables the sampler, i.e., every call to Sample() + // will return false. Setting a period of 1 puts the sampler in 'always on' + // mode, i.e., every call to Sample() returns true. + static void SetGlobalPeriod(int period) { + period_.store(period, std::memory_order_relaxed); + } + + private: + static std::atomic<int> period_; +}; + +template <typename Tag, int default_period> +std::atomic<int> PeriodicSampler<Tag, default_period>::period_(default_period); + +} // namespace profiling_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_PROFILING_INTERNAL_PERIODIC_SAMPLER_H_ diff --git a/absl/profiling/internal/periodic_sampler_benchmark.cc b/absl/profiling/internal/periodic_sampler_benchmark.cc new file mode 100644 index 00000000..8f0e5574 --- /dev/null +++ b/absl/profiling/internal/periodic_sampler_benchmark.cc @@ -0,0 +1,79 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/profiling/internal/periodic_sampler.h" +#include "benchmark/benchmark.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace profiling_internal { +namespace { + +template <typename Sampler> +void BM_Sample(Sampler* sampler, benchmark::State& state) { + for (auto _ : state) { + benchmark::DoNotOptimize(sampler); + benchmark::DoNotOptimize(sampler->Sample()); + } +} + +template <typename Sampler> +void BM_SampleMinunumInlined(Sampler* sampler, benchmark::State& state) { + for (auto _ : state) { + benchmark::DoNotOptimize(sampler); + if (ABSL_PREDICT_FALSE(sampler->SubtleMaybeSample())) { + benchmark::DoNotOptimize(sampler->SubtleConfirmSample()); + } + } +} + +void BM_PeriodicSampler_TinySample(benchmark::State& state) { + struct Tag {}; + PeriodicSampler<Tag, 10> sampler; + BM_Sample(&sampler, state); +} +BENCHMARK(BM_PeriodicSampler_TinySample); + +void BM_PeriodicSampler_ShortSample(benchmark::State& state) { + struct Tag {}; + PeriodicSampler<Tag, 1024> sampler; + BM_Sample(&sampler, state); +} +BENCHMARK(BM_PeriodicSampler_ShortSample); + +void BM_PeriodicSampler_LongSample(benchmark::State& state) { + struct Tag {}; + PeriodicSampler<Tag, 1024 * 1024> sampler; + BM_Sample(&sampler, state); +} +BENCHMARK(BM_PeriodicSampler_LongSample); + +void BM_PeriodicSampler_LongSampleMinunumInlined(benchmark::State& state) { + struct Tag {}; + PeriodicSampler<Tag, 1024 * 1024> sampler; + BM_SampleMinunumInlined(&sampler, state); +} +BENCHMARK(BM_PeriodicSampler_LongSampleMinunumInlined); + +void BM_PeriodicSampler_Disabled(benchmark::State& state) { + struct Tag {}; + PeriodicSampler<Tag, 0> sampler; + BM_Sample(&sampler, state); +} +BENCHMARK(BM_PeriodicSampler_Disabled); + +} // namespace +} // namespace profiling_internal +ABSL_NAMESPACE_END +} // namespace absl diff --git a/absl/profiling/internal/periodic_sampler_test.cc b/absl/profiling/internal/periodic_sampler_test.cc new file mode 100644 index 00000000..ef986f38 --- /dev/null +++ b/absl/profiling/internal/periodic_sampler_test.cc @@ -0,0 +1,177 @@ +// Copyright 2019 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/profiling/internal/periodic_sampler.h" + +#include <thread> // NOLINT(build/c++11) + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/base/attributes.h" +#include "absl/base/macros.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace profiling_internal { +namespace { + +using testing::Eq; +using testing::Return; +using testing::StrictMock; + +class MockPeriodicSampler : public PeriodicSamplerBase { + public: + virtual ~MockPeriodicSampler() = default; + + MOCK_METHOD(int, period, (), (const, noexcept)); + MOCK_METHOD(int64_t, GetExponentialBiased, (int), (noexcept)); +}; + +TEST(PeriodicSamplerBaseTest, Sample) { + StrictMock<MockPeriodicSampler> sampler; + + EXPECT_CALL(sampler, period()).Times(3).WillRepeatedly(Return(16)); + EXPECT_CALL(sampler, GetExponentialBiased(16)) + .WillOnce(Return(2)) + .WillOnce(Return(3)) + .WillOnce(Return(4)); + + EXPECT_FALSE(sampler.Sample()); + EXPECT_TRUE(sampler.Sample()); + + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); + EXPECT_TRUE(sampler.Sample()); + + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); +} + +TEST(PeriodicSamplerBaseTest, ImmediatelySample) { + StrictMock<MockPeriodicSampler> sampler; + + EXPECT_CALL(sampler, period()).Times(2).WillRepeatedly(Return(16)); + EXPECT_CALL(sampler, GetExponentialBiased(16)) + .WillOnce(Return(1)) + .WillOnce(Return(2)) + .WillOnce(Return(3)); + + EXPECT_TRUE(sampler.Sample()); + + EXPECT_FALSE(sampler.Sample()); + EXPECT_TRUE(sampler.Sample()); + + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); +} + +TEST(PeriodicSamplerBaseTest, Disabled) { + StrictMock<MockPeriodicSampler> sampler; + + EXPECT_CALL(sampler, period()).Times(3).WillRepeatedly(Return(0)); + + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); +} + +TEST(PeriodicSamplerBaseTest, AlwaysOn) { + StrictMock<MockPeriodicSampler> sampler; + + EXPECT_CALL(sampler, period()).Times(3).WillRepeatedly(Return(1)); + + EXPECT_TRUE(sampler.Sample()); + EXPECT_TRUE(sampler.Sample()); + EXPECT_TRUE(sampler.Sample()); +} + +TEST(PeriodicSamplerBaseTest, Disable) { + StrictMock<MockPeriodicSampler> sampler; + + EXPECT_CALL(sampler, period()).WillOnce(Return(16)); + EXPECT_CALL(sampler, GetExponentialBiased(16)).WillOnce(Return(3)); + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); + + EXPECT_CALL(sampler, period()).Times(2).WillRepeatedly(Return(0)); + + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); +} + +TEST(PeriodicSamplerBaseTest, Enable) { + StrictMock<MockPeriodicSampler> sampler; + + EXPECT_CALL(sampler, period()).WillOnce(Return(0)); + EXPECT_FALSE(sampler.Sample()); + + EXPECT_CALL(sampler, period()).Times(2).WillRepeatedly(Return(16)); + EXPECT_CALL(sampler, GetExponentialBiased(16)) + .Times(2) + .WillRepeatedly(Return(3)); + + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); + EXPECT_TRUE(sampler.Sample()); + + EXPECT_FALSE(sampler.Sample()); + EXPECT_FALSE(sampler.Sample()); +} + +TEST(PeriodicSamplerTest, ConstructConstInit) { + struct Tag {}; + ABSL_CONST_INIT static PeriodicSampler<Tag> sampler; + (void)sampler; +} + +TEST(PeriodicSamplerTest, DefaultPeriod0) { + struct Tag {}; + PeriodicSampler<Tag> sampler; + EXPECT_THAT(sampler.period(), Eq(0)); +} + +TEST(PeriodicSamplerTest, DefaultPeriod) { + struct Tag {}; + PeriodicSampler<Tag, 100> sampler; + EXPECT_THAT(sampler.period(), Eq(100)); +} + +TEST(PeriodicSamplerTest, SetGlobalPeriod) { + struct Tag1 {}; + struct Tag2 {}; + PeriodicSampler<Tag1, 25> sampler1; + PeriodicSampler<Tag2, 50> sampler2; + + EXPECT_THAT(sampler1.period(), Eq(25)); + EXPECT_THAT(sampler2.period(), Eq(50)); + + std::thread thread([] { + PeriodicSampler<Tag1, 25> sampler1; + PeriodicSampler<Tag2, 50> sampler2; + EXPECT_THAT(sampler1.period(), Eq(25)); + EXPECT_THAT(sampler2.period(), Eq(50)); + sampler1.SetGlobalPeriod(10); + sampler2.SetGlobalPeriod(20); + }); + thread.join(); + + EXPECT_THAT(sampler1.period(), Eq(10)); + EXPECT_THAT(sampler2.period(), Eq(20)); +} + +} // namespace +} // namespace profiling_internal +ABSL_NAMESPACE_END +} // namespace absl |