summaryrefslogtreecommitdiff
path: root/absl
diff options
context:
space:
mode:
authorGravatar Abseil Team <absl-team@google.com>2022-09-26 06:36:48 -0700
committerGravatar Copybara-Service <copybara-worker@google.com>2022-09-26 06:37:29 -0700
commit7f9c536c0a5e4719ea8978999de699a1faa35591 (patch)
tree75c40d8d4d8c7210a50e19797e09073f20998677 /absl
parent8b951b099955e0635409a7b4294b5e83e455af43 (diff)
Implement Eisel-Lemire for from_chars<float>
This does for float what a recent commit did for double. Median of 5 runs of "time atod_manual_test pnftd/data/*.txt" user 0m0.730s # Before user 0m0.701s # After (a speed-up of 1.04x) where pnftd is https://github.com/nigeltao/parse-number-fxx-test-data Part of the reason why this speed-up of 1.04x isn't as dramatic as for the from_chars<double> change is that, out of the 5299993 pnftd test cases, 76.42% produce result_out_of_range for single precision (compared to 1.03% for double precision). "benchy --reference=srcfs --benchmark_filter='SimpleAtof' :numbers_benchmark" output (which uses deterministic but randomly generated input strings): name old cpu/op new cpu/op delta BM_SimpleAtof<absl::string_view>/10/1 392ns ± 2% 323ns ± 3% -17.60% (p=0.000 n=48+48) BM_SimpleAtof<absl::string_view>/10/2 426ns ± 3% 311ns ± 4% -26.89% (p=0.000 n=59+49) BM_SimpleAtof<absl::string_view>/10/4 435ns ± 3% 341ns ± 3% -21.68% (p=0.000 n=58+48) BM_SimpleAtof<absl::string_view>/10/8 501ns ± 3% 393ns ± 3% -21.55% (p=0.000 n=60+50) BM_SimpleAtof<const char*>/10/1 409ns ± 6% 339ns ± 3% -17.06% (p=0.000 n=48+49) BM_SimpleAtof<const char*>/10/2 412ns ± 4% 347ns ± 3% -15.82% (p=0.000 n=47+49) BM_SimpleAtof<const char*>/10/4 463ns ± 6% 369ns ± 6% -20.37% (p=0.000 n=60+50) BM_SimpleAtof<const char*>/10/8 548ns ± 3% 450ns ± 4% -17.91% (p=0.000 n=57+59) BM_SimpleAtof<std::string>/10/1 386ns ± 2% 325ns ± 3% -15.74% (p=0.000 n=48+50) BM_SimpleAtof<std::string>/10/2 425ns ± 3% 311ns ± 4% -26.79% (p=0.000 n=60+50) BM_SimpleAtof<std::string>/10/4 435ns ± 4% 340ns ± 3% -21.94% (p=0.000 n=59+49) BM_SimpleAtof<std::string>/10/8 503ns ± 4% 398ns ± 2% -20.89% (p=0.000 n=59+48) PiperOrigin-RevId: 476880111 Change-Id: Ibc5583677ac2ed338d09d8db960ae8a513eb2ccb
Diffstat (limited to 'absl')
-rw-r--r--absl/strings/charconv.cc161
-rw-r--r--absl/strings/numbers_test.cc129
2 files changed, 256 insertions, 34 deletions
diff --git a/absl/strings/charconv.cc b/absl/strings/charconv.cc
index 9eac9be6..147477b4 100644
--- a/absl/strings/charconv.cc
+++ b/absl/strings/charconv.cc
@@ -68,6 +68,12 @@ template <>
struct FloatTraits<double> {
using mantissa_t = uint64_t;
+ // The number of bits in the given float type.
+ static constexpr int kTargetBits = 64;
+
+ // The number of exponent bits in the given float type.
+ static constexpr int kTargetExponentBits = 11;
+
// The number of mantissa bits in the given float type. This includes the
// implied high bit.
static constexpr int kTargetMantissaBits = 53;
@@ -86,6 +92,31 @@ struct FloatTraits<double> {
// m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
static constexpr int kMinNormalExponent = -1074;
+ // The IEEE exponent bias. It equals ((1 << (kTargetExponentBits - 1)) - 1).
+ static constexpr int kExponentBias = 1023;
+
+ // The Eisel-Lemire "Shifting to 54/25 Bits" adjustment. It equals (63 - 1 -
+ // kTargetMantissaBits).
+ static constexpr int kEiselLemireShift = 9;
+
+ // The Eisel-Lemire high64_mask. It equals ((1 << kEiselLemireShift) - 1).
+ static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
+
+ // The smallest negative integer N (smallest negative means furthest from
+ // zero) such that parsing 9999999999999999999eN, with 19 nines, is still
+ // positive. Parsing a smaller (more negative) N will produce zero.
+ //
+ // Adjusting the decimal point and exponent, without adjusting the value,
+ // 9999999999999999999eN equals 9.999999999999999999eM where M = N + 18.
+ //
+ // 9999999999999999999, with 19 nines but no decimal point, is the largest
+ // "repeated nines" integer that fits in a uint64_t.
+ static constexpr int kEiselLemireMinInclExp10 = -324 - 18;
+
+ // The smallest positive integer N such that parsing 1eN produces infinity.
+ // Parsing a smaller N will produce something finite.
+ static constexpr int kEiselLemireMaxExclExp10 = 309;
+
static double MakeNan(const char* tagp) {
// Support nan no matter which namespace it's in. Some platforms
// incorrectly don't put it in namespace std.
@@ -141,9 +172,16 @@ template <>
struct FloatTraits<float> {
using mantissa_t = uint32_t;
+ static constexpr int kTargetBits = 32;
+ static constexpr int kTargetExponentBits = 8;
static constexpr int kTargetMantissaBits = 24;
static constexpr int kMaxExponent = 104;
static constexpr int kMinNormalExponent = -149;
+ static constexpr int kExponentBias = 127;
+ static constexpr int kEiselLemireShift = 38;
+ static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
+ static constexpr int kEiselLemireMinInclExp10 = -46 - 18;
+ static constexpr int kEiselLemireMaxExclExp10 = 39;
static float MakeNan(const char* tagp) {
// Support nanf no matter which namespace it's in. Some platforms
@@ -615,33 +653,55 @@ CalculatedFloat CalculateFromParsedDecimal(
// this function returns false) is both fast and correct.
template <typename FloatType>
bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
- FloatType* value) {
- // For now, implement Eisel-Lemire only for double, not float.
- if (FloatTraits<FloatType>::kTargetMantissaBits != 53) {
- return false;
- }
-
+ FloatType* value, std::errc* ec) {
uint64_t man = input.mantissa;
int exp10 = input.exponent;
- if (Power10Underflow(exp10) || Power10Overflow(exp10)) {
- return false;
+ if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclExp10) {
+ *value = negative ? -0.0 : 0.0;
+ *ec = std::errc::result_out_of_range;
+ return true;
+ } else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclExp10) {
+ // Return max (a finite value) consistent with from_chars and DR 3081. For
+ // SimpleAtod and SimpleAtof, post-processing will return infinity.
+ *value = negative ? -std::numeric_limits<FloatType>::max()
+ : std::numeric_limits<FloatType>::max();
+ *ec = std::errc::result_out_of_range;
+ return true;
}
+ // Assert that (kPower10TableMin <= exp10) and (exp10 <= kPower10TableMax).
+ // Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
+ //
+ // The +1 is because kEiselLemireMaxExclExp10 is an exclusive bound but
+ // kPower10TableMax is inclusive.
+ static_assert(
+ FloatTraits<FloatType>::kEiselLemireMinInclExp10 >= kPower10TableMin,
+ "(exp10 - kPower10TableMin) within kPower10MantissaHighTable bounds");
+ static_assert(
+ FloatTraits<FloatType>::kEiselLemireMaxExclExp10 <= kPower10TableMax + 1,
+ "(exp10 - kPower10TableMin) within kPower10MantissaHighTable bounds");
+
// The terse (+) comments in this function body refer to sections of the
// https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
//
+ // That blog post discusses double precision (11 exponent bits with a -1023
+ // bias, 52 mantissa bits), but the same approach applies to single precision
+ // (8 exponent bits with a -127 bias, 23 mantissa bits). Either way, the
+ // computation here happens with 64-bit values (e.g. man) or 128-bit values
+ // (e.g. x) before finally converting to 64- or 32-bit floating point.
+ //
// See also "Number Parsing at a Gigabyte per Second, Software: Practice and
// Experience 51 (8), 2021" (https://arxiv.org/abs/2101.11408) for detail.
// (+) Normalization.
int clz = countl_zero(man);
man <<= static_cast<unsigned int>(clz);
- static constexpr int exp2_bias = 1023;
// The 217706 etc magic numbers encode the kPower10ExponentTable as a formula
// instead of a table. Their equivalence is confirmed by
// https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
uint64_t ret_exp2 =
- static_cast<uint64_t>((217706 * exp10 >> 16) + 64 + exp2_bias - clz);
+ static_cast<uint64_t>((217706 * exp10 >> 16) + 64 +
+ FloatTraits<FloatType>::kExponentBias - clz);
// (+) Multiplication.
uint128 x =
@@ -649,47 +709,62 @@ bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
static_cast<uint128>(kPower10MantissaHighTable[exp10 - kPower10TableMin]);
// (+) Wider Approximation.
- if (((Uint128High64(x) & 0x1FF) == 0x1FF) &&
+ static constexpr uint64_t high64_mask =
+ FloatTraits<FloatType>::kEiselLemireMask;
+ if (((Uint128High64(x) & high64_mask) == high64_mask) &&
(man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
uint128 y = static_cast<uint128>(man) *
static_cast<uint128>(
kPower10MantissaLowTable[exp10 - kPower10TableMin]);
x += Uint128High64(y);
// For example, parsing "4503599627370497.5" will take the if-true
- // branch here, since:
+ // branch here (for double precision), since:
// - x = 0x8000000000000BFF_FFFFFFFFFFFFFFFF
// - y = 0x8000000000000BFF_7FFFFFFFFFFFF400
// - man = 0xA000000000000F00
- if (((Uint128High64(x) & 0x1FF) == 0x1FF) && ((Uint128Low64(x) + 1) == 0) &&
+ // Likewise, when parsing "0.0625" for single precision:
+ // - x = 0x7FFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF
+ // - y = 0x813FFFFFFFFFFFFF_8A00000000000000
+ // - man = 0x9C40000000000000
+ if (((Uint128High64(x) & high64_mask) == high64_mask) &&
+ ((Uint128Low64(x) + 1) == 0) &&
(man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(y)))) {
return false;
}
}
- // (+) Shifting to 54 Bits.
+ // (+) Shifting to 54 Bits (or for single precision, to 25 bits).
uint64_t msb = Uint128High64(x) >> 63;
- uint64_t ret_man = Uint128High64(x) >> (msb + 9);
+ uint64_t ret_man =
+ Uint128High64(x) >> (msb + FloatTraits<FloatType>::kEiselLemireShift);
ret_exp2 -= 1 ^ msb;
// (+) Half-way Ambiguity.
//
- // For example, parsing "1e+23" will take the if-true branch here, since:
+ // For example, parsing "1e+23" will take the if-true branch here (for double
+ // precision), since:
// - x = 0x54B40B1F852BDA00_0000000000000000
// - ret_man = 0x002A5A058FC295ED
- if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & 0x1FF) == 0) &&
+ // Likewise, when parsing "20040229.0" for single precision:
+ // - x = 0x4C72894000000000_0000000000000000
+ // - ret_man = 0x000000000131CA25
+ if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & high64_mask) == 0) &&
((ret_man & 3) == 1)) {
return false;
}
- // (+) From 54 to 53 Bits.
+ // (+) From 54 to 53 Bits (or for single precision, from 25 to 24 bits).
ret_man += ret_man & 1; // Line From54a.
ret_man >>= 1; // Line From54b.
// Incrementing ret_man (at line From54a) may have overflowed 54 bits (53
// bits after the right shift by 1 at line From54b), so adjust for that.
//
// For example, parsing "9223372036854775807" will take the if-true branch
- // here, since ret_man = 0x0020000000000000 = (1 << 53).
- if ((ret_man >> 53) > 0) {
+ // here (for double precision), since:
+ // - ret_man = 0x0020000000000000 = (1 << 53)
+ // Likewise, when parsing "2147483647.0" for single precision:
+ // - ret_man = 0x0000000001000000 = (1 << 24)
+ if ((ret_man >> FloatTraits<FloatType>::kTargetMantissaBits) > 0) {
ret_exp2 += 1;
// Conceptually, we need a "ret_man >>= 1" in this if-block to balance
// incrementing ret_exp2 in the line immediately above. However, we only
@@ -705,29 +780,51 @@ bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
}
// ret_exp2 is a uint64_t. Zero or underflow means that we're in subnormal
- // space. 0x7FF or above means that we're in Inf/NaN space.
+ // space. max_exp2 (0x7FF for double precision, 0xFF for single precision) or
+ // above means that we're in Inf/NaN space.
//
// The if block is equivalent to (but has fewer branches than):
- // if ((ret_exp2 <= 0) || (ret_exp2 >= 0x7FF)) { etc }
+ // if ((ret_exp2 <= 0) || (ret_exp2 >= max_exp2)) { etc }
//
// For example, parsing "4.9406564584124654e-324" will take the if-true
// branch here, since ret_exp2 = -51.
- if ((ret_exp2 - 1) >= (0x7FF - 1)) {
+ static constexpr uint64_t max_exp2 =
+ (1 << FloatTraits<FloatType>::kTargetExponentBits) - 1;
+ if ((ret_exp2 - 1) >= (max_exp2 - 1)) {
return false;
}
#ifndef ABSL_BIT_PACK_FLOATS
- *value = FloatTraits<FloatType>::Make(
- (ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
- ret_exp2 - 1023 - 52, negative);
+ if (FloatTraits<FloatType>::kTargetBits == 64) {
+ *value = FloatTraits<FloatType>::Make(
+ (ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
+ static_cast<int>(ret_exp2) - 1023 - 52, negative);
+ return true;
+ } else if (FloatTraits<FloatType>::kTargetBits == 32) {
+ *value = FloatTraits<FloatType>::Make(
+ (static_cast<uint32_t>(ret_man) & 0x007FFFFFu) | 0x00800000u,
+ static_cast<int>(ret_exp2) - 127 - 23, negative);
+ return true;
+ }
#else
- uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
- if (negative) {
- ret_bits |= 0x8000000000000000u;
+ if (FloatTraits<FloatType>::kTargetBits == 64) {
+ uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
+ if (negative) {
+ ret_bits |= 0x8000000000000000u;
+ }
+ *value = absl::bit_cast<double>(ret_bits);
+ return true;
+ } else if (FloatTraits<FloatType>::kTargetBits == 32) {
+ uint32_t ret_bits = (static_cast<uint32_t>(ret_exp2) << 23) |
+ (static_cast<uint32_t>(ret_man) & 0x007FFFFFu);
+ if (negative) {
+ ret_bits |= 0x80000000u;
+ }
+ *value = absl::bit_cast<float>(ret_bits);
+ return true;
}
- *value = absl::bit_cast<double>(ret_bits);
#endif // ABSL_BIT_PACK_FLOATS
- return true;
+ return false;
}
template <typename FloatType>
@@ -806,7 +903,7 @@ from_chars_result FromCharsImpl(const char* first, const char* last,
// A nullptr subrange_begin means that the decimal_parse.mantissa is exact
// (not truncated), a precondition of the Eisel-Lemire algorithm.
if ((decimal_parse.subrange_begin == nullptr) &&
- EiselLemire<FloatType>(decimal_parse, negative, &value)) {
+ EiselLemire<FloatType>(decimal_parse, negative, &value, &result.ec)) {
return result;
}
CalculatedFloat calculated =
diff --git a/absl/strings/numbers_test.cc b/absl/strings/numbers_test.cc
index 41e95b80..b3c098d1 100644
--- a/absl/strings/numbers_test.cc
+++ b/absl/strings/numbers_test.cc
@@ -19,6 +19,7 @@
#include <sys/types.h>
#include <cfenv> // NOLINT(build/c++11)
+#include <cfloat>
#include <cinttypes>
#include <climits>
#include <cmath>
@@ -388,7 +389,18 @@ TEST(NumbersTest, Atoi) {
}
TEST(NumbersTest, Atod) {
+ // DBL_TRUE_MIN and FLT_TRUE_MIN were not mandated in <cfloat> before C++17.
+#if !defined(DBL_TRUE_MIN)
+ static constexpr double DBL_TRUE_MIN =
+ 4.940656458412465441765687928682213723650598026143247644255856825e-324;
+#endif
+#if !defined(FLT_TRUE_MIN)
+ static constexpr float FLT_TRUE_MIN =
+ 1.401298464324817070923729583289916131280261941876515771757068284e-45f;
+#endif
+
double d;
+ float f;
// NaN can be spelled in multiple ways.
EXPECT_TRUE(absl::SimpleAtod("NaN", &d));
@@ -412,12 +424,116 @@ TEST(NumbersTest, Atod) {
EXPECT_EQ(d, 1.7976931348623157e+308);
EXPECT_TRUE(absl::SimpleAtod("5e308", &d));
EXPECT_TRUE(std::isinf(d) && (d > 0));
-
- // Parse DBL_MIN (normal) and DBL_TRUE_MIN (subnormal).
+ // Ditto, but for FLT_MAX.
+ EXPECT_TRUE(absl::SimpleAtof("3.4028234663852886e+38", &f));
+ EXPECT_EQ(f, 3.4028234663852886e+38f);
+ EXPECT_TRUE(absl::SimpleAtof("7e38", &f));
+ EXPECT_TRUE(std::isinf(f) && (f > 0));
+
+ // Parse the largest N such that parsing 1eN produces a finite value and the
+ // smallest M = N + 1 such that parsing 1eM produces infinity.
+ //
+ // The 309 exponent (and 39) confirms the "definition of
+ // kEiselLemireMaxExclExp10" comment in charconv.cc.
+ EXPECT_TRUE(absl::SimpleAtod("1e308", &d));
+ EXPECT_EQ(d, 1e308);
+ EXPECT_FALSE(std::isinf(d));
+ EXPECT_TRUE(absl::SimpleAtod("1e309", &d));
+ EXPECT_TRUE(std::isinf(d));
+ // Ditto, but for Atof instead of Atod.
+ EXPECT_TRUE(absl::SimpleAtof("1e38", &f));
+ EXPECT_EQ(f, 1e38f);
+ EXPECT_FALSE(std::isinf(f));
+ EXPECT_TRUE(absl::SimpleAtof("1e39", &f));
+ EXPECT_TRUE(std::isinf(f));
+
+ // Parse the largest N such that parsing 9.999999999999999999eN, with 19
+ // nines, produces a finite value.
+ //
+ // 9999999999999999999, with 19 nines but no decimal point, is the largest
+ // "repeated nines" integer that fits in a uint64_t.
+ EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e307", &d));
+ EXPECT_EQ(d, 9.999999999999999999e307);
+ EXPECT_FALSE(std::isinf(d));
+ EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e308", &d));
+ EXPECT_TRUE(std::isinf(d));
+ // Ditto, but for Atof instead of Atod.
+ EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e37", &f));
+ EXPECT_EQ(f, 9.999999999999999999e37f);
+ EXPECT_FALSE(std::isinf(f));
+ EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e38", &f));
+ EXPECT_TRUE(std::isinf(f));
+
+ // Parse DBL_MIN (normal), DBL_TRUE_MIN (subnormal) and (DBL_TRUE_MIN / 10)
+ // (effectively zero).
EXPECT_TRUE(absl::SimpleAtod("2.2250738585072014e-308", &d));
EXPECT_EQ(d, 2.2250738585072014e-308);
EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-324", &d));
EXPECT_EQ(d, 4.9406564584124654e-324);
+ EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-325", &d));
+ EXPECT_EQ(d, 0);
+ // Ditto, but for FLT_MIN, FLT_TRUE_MIN and (FLT_TRUE_MIN / 10).
+ EXPECT_TRUE(absl::SimpleAtof("1.1754943508222875e-38", &f));
+ EXPECT_EQ(f, 1.1754943508222875e-38f);
+ EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-45", &f));
+ EXPECT_EQ(f, 1.4012984643248171e-45f);
+ EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-46", &f));
+ EXPECT_EQ(f, 0);
+
+ // Parse the largest N (the most negative -N) such that parsing 1e-N produces
+ // a normal or subnormal (but still positive) or zero value.
+ EXPECT_TRUE(absl::SimpleAtod("1e-307", &d));
+ EXPECT_EQ(d, 1e-307);
+ EXPECT_GE(d, DBL_MIN);
+ EXPECT_LT(d, DBL_MIN * 10);
+ EXPECT_TRUE(absl::SimpleAtod("1e-323", &d));
+ EXPECT_EQ(d, 1e-323);
+ EXPECT_GE(d, DBL_TRUE_MIN);
+ EXPECT_LT(d, DBL_TRUE_MIN * 10);
+ EXPECT_TRUE(absl::SimpleAtod("1e-324", &d));
+ EXPECT_EQ(d, 0);
+ // Ditto, but for Atof instead of Atod.
+ EXPECT_TRUE(absl::SimpleAtof("1e-37", &f));
+ EXPECT_EQ(f, 1e-37f);
+ EXPECT_GE(f, FLT_MIN);
+ EXPECT_LT(f, FLT_MIN * 10);
+ EXPECT_TRUE(absl::SimpleAtof("1e-45", &f));
+ EXPECT_EQ(f, 1e-45f);
+ EXPECT_GE(f, FLT_TRUE_MIN);
+ EXPECT_LT(f, FLT_TRUE_MIN * 10);
+ EXPECT_TRUE(absl::SimpleAtof("1e-46", &f));
+ EXPECT_EQ(f, 0);
+
+ // Parse the largest N (the most negative -N) such that parsing
+ // 9.999999999999999999e-N, with 19 nines, produces a normal or subnormal
+ // (but still positive) or zero value.
+ //
+ // 9999999999999999999, with 19 nines but no decimal point, is the largest
+ // "repeated nines" integer that fits in a uint64_t.
+ //
+ // The -324/-325 exponents (and -46/-47) confirms the "definition of
+ // kEiselLemireMinInclExp10" comment in charconv.cc.
+ EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-308", &d));
+ EXPECT_EQ(d, 9.999999999999999999e-308);
+ EXPECT_GE(d, DBL_MIN);
+ EXPECT_LT(d, DBL_MIN * 10);
+ EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-324", &d));
+ EXPECT_EQ(d, 9.999999999999999999e-324);
+ EXPECT_GE(d, DBL_TRUE_MIN);
+ EXPECT_LT(d, DBL_TRUE_MIN * 10);
+ EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-325", &d));
+ EXPECT_EQ(d, 0);
+ // Ditto, but for Atof instead of Atod.
+ EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-38", &f));
+ EXPECT_EQ(f, 9.999999999999999999e-38f);
+ EXPECT_GE(f, FLT_MIN);
+ EXPECT_LT(f, FLT_MIN * 10);
+ EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-46", &f));
+ EXPECT_EQ(f, 9.999999999999999999e-46f);
+ EXPECT_GE(f, FLT_TRUE_MIN);
+ EXPECT_LT(f, FLT_TRUE_MIN * 10);
+ EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-47", &f));
+ EXPECT_EQ(f, 0);
// Leading and/or trailing whitespace is OK.
EXPECT_TRUE(absl::SimpleAtod(" \t\r\n 2.718", &d));
@@ -459,6 +575,13 @@ TEST(NumbersTest, Atod) {
EXPECT_EQ(d, 1e+23);
EXPECT_TRUE(absl::SimpleAtod("9223372036854775807", &d));
EXPECT_EQ(d, 9223372036854775807);
+ // Ditto, but for Atof instead of Atod.
+ EXPECT_TRUE(absl::SimpleAtof("0.0625", &f));
+ EXPECT_EQ(f, 0.0625f);
+ EXPECT_TRUE(absl::SimpleAtof("20040229.0", &f));
+ EXPECT_EQ(f, 20040229.0f);
+ EXPECT_TRUE(absl::SimpleAtof("2147483647.0", &f));
+ EXPECT_EQ(f, 2147483647.0f);
// Some parsing algorithms don't always round correctly (but absl::SimpleAtod
// should). This test case comes from
@@ -467,6 +590,8 @@ TEST(NumbersTest, Atod) {
// See also atod_manual_test.cc for running many more test cases.
EXPECT_TRUE(absl::SimpleAtod("122.416294033786585", &d));
EXPECT_EQ(d, 122.416294033786585);
+ EXPECT_TRUE(absl::SimpleAtof("122.416294033786585", &f));
+ EXPECT_EQ(f, 122.416294033786585f);
}
TEST(NumbersTest, Prefixes) {