diff options
author | misterg <misterg@google.com> | 2017-09-19 16:54:40 -0400 |
---|---|---|
committer | misterg <misterg@google.com> | 2017-09-19 16:54:40 -0400 |
commit | c2e754829628d1e9b7a16b3389cfdace76950fdf (patch) | |
tree | 5a7f056f44e27c30e10025113b644f0b3b5801fc /absl/time/time_test.cc |
Initial Commit
Diffstat (limited to 'absl/time/time_test.cc')
-rw-r--r-- | absl/time/time_test.cc | 1027 |
1 files changed, 1027 insertions, 0 deletions
diff --git a/absl/time/time_test.cc b/absl/time/time_test.cc new file mode 100644 index 00000000..51b9e53d --- /dev/null +++ b/absl/time/time_test.cc @@ -0,0 +1,1027 @@ +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/time/time.h" + +#include <cstring> +#include <ctime> +#include <iomanip> +#include <limits> +#include <string> + +#include "gmock/gmock.h" +#include "gtest/gtest.h" +#include "absl/time/clock.h" +#include "absl/time/internal/test_util.h" + +namespace { + +// A gMock matcher to match timespec values. Use this matcher like: +// timespec ts1, ts2; +// EXPECT_THAT(ts1, TimespecMatcher(ts2)); +MATCHER_P(TimespecMatcher, ts, "") { + if (ts.tv_sec == arg.tv_sec && ts.tv_nsec == arg.tv_nsec) + return true; + *result_listener << "expected: {" << ts.tv_sec << ", " << ts.tv_nsec << "} "; + *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_nsec << "}"; + return false; +} + +// A gMock matcher to match timeval values. Use this matcher like: +// timeval tv1, tv2; +// EXPECT_THAT(tv1, TimevalMatcher(tv2)); +MATCHER_P(TimevalMatcher, tv, "") { + if (tv.tv_sec == arg.tv_sec && tv.tv_usec == arg.tv_usec) + return true; + *result_listener << "expected: {" << tv.tv_sec << ", " << tv.tv_usec << "} "; + *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_usec << "}"; + return false; +} + +TEST(Time, ConstExpr) { + constexpr absl::Time t0 = absl::UnixEpoch(); + static_assert(t0 == absl::Time(), "UnixEpoch"); + constexpr absl::Time t1 = absl::InfiniteFuture(); + static_assert(t1 != absl::Time(), "InfiniteFuture"); + constexpr absl::Time t2 = absl::InfinitePast(); + static_assert(t2 != absl::Time(), "InfinitePast"); + constexpr absl::Time t3 = absl::FromUnixNanos(0); + static_assert(t3 == absl::Time(), "FromUnixNanos"); + constexpr absl::Time t4 = absl::FromUnixMicros(0); + static_assert(t4 == absl::Time(), "FromUnixMicros"); + constexpr absl::Time t5 = absl::FromUnixMillis(0); + static_assert(t5 == absl::Time(), "FromUnixMillis"); + constexpr absl::Time t6 = absl::FromUnixSeconds(0); + static_assert(t6 == absl::Time(), "FromUnixSeconds"); + constexpr absl::Time t7 = absl::FromTimeT(0); + static_assert(t7 == absl::Time(), "FromTimeT"); +} + +TEST(Time, ValueSemantics) { + absl::Time a; // Default construction + absl::Time b = a; // Copy construction + EXPECT_EQ(a, b); + absl::Time c(a); // Copy construction (again) + EXPECT_EQ(a, b); + EXPECT_EQ(a, c); + EXPECT_EQ(b, c); + b = c; // Assignment + EXPECT_EQ(a, b); + EXPECT_EQ(a, c); + EXPECT_EQ(b, c); +} + +TEST(Time, UnixEpoch) { + absl::Time::Breakdown bd = absl::UnixEpoch().In(absl::UTCTimeZone()); + ABSL_INTERNAL_EXPECT_TIME(bd, 1970, 1, 1, 0, 0, 0, 0, false, "UTC"); + EXPECT_EQ(absl::ZeroDuration(), bd.subsecond); + EXPECT_EQ(4, bd.weekday); // Thursday +} + +TEST(Time, Breakdown) { + absl::TimeZone tz = absl::time_internal::LoadTimeZone("America/New_York"); + absl::Time t = absl::UnixEpoch(); + + // The Unix epoch as seen in NYC. + absl::Time::Breakdown bd = t.In(tz); + ABSL_INTERNAL_EXPECT_TIME(bd, 1969, 12, 31, 19, 0, 0, -18000, false, "EST"); + EXPECT_EQ(absl::ZeroDuration(), bd.subsecond); + EXPECT_EQ(3, bd.weekday); // Wednesday + + // Just before the epoch. + t -= absl::Nanoseconds(1); + bd = t.In(tz); + ABSL_INTERNAL_EXPECT_TIME(bd, 1969, 12, 31, 18, 59, 59, -18000, false, "EST"); + EXPECT_EQ(absl::Nanoseconds(999999999), bd.subsecond); + EXPECT_EQ(3, bd.weekday); // Wednesday + + // Some time later. + t += absl::Hours(24) * 2735; + t += absl::Hours(18) + absl::Minutes(30) + absl::Seconds(15) + + absl::Nanoseconds(9); + bd = t.In(tz); + ABSL_INTERNAL_EXPECT_TIME(bd, 1977, 6, 28, 14, 30, 15, -14400, true, "EDT"); + EXPECT_EQ(8, bd.subsecond / absl::Nanoseconds(1)); + EXPECT_EQ(2, bd.weekday); // Tuesday +} + +TEST(Time, AdditiveOperators) { + const absl::Duration d = absl::Nanoseconds(1); + const absl::Time t0; + const absl::Time t1 = t0 + d; + + EXPECT_EQ(d, t1 - t0); + EXPECT_EQ(-d, t0 - t1); + EXPECT_EQ(t0, t1 - d); + + absl::Time t(t0); + EXPECT_EQ(t0, t); + t += d; + EXPECT_EQ(t0 + d, t); + EXPECT_EQ(d, t - t0); + t -= d; + EXPECT_EQ(t0, t); + + // Tests overflow between subseconds and seconds. + t = absl::UnixEpoch(); + t += absl::Milliseconds(500); + EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t); + t += absl::Milliseconds(600); + EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(1100), t); + t -= absl::Milliseconds(600); + EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t); + t -= absl::Milliseconds(500); + EXPECT_EQ(absl::UnixEpoch(), t); +} + +TEST(Time, RelationalOperators) { + constexpr absl::Time t1 = absl::FromUnixNanos(0); + constexpr absl::Time t2 = absl::FromUnixNanos(1); + constexpr absl::Time t3 = absl::FromUnixNanos(2); + + static_assert(absl::Time() == t1, ""); + static_assert(t1 == t1, ""); + static_assert(t2 == t2, ""); + static_assert(t3 == t3, ""); + + static_assert(t1 < t2, ""); + static_assert(t2 < t3, ""); + static_assert(t1 < t3, ""); + + static_assert(t1 <= t1, ""); + static_assert(t1 <= t2, ""); + static_assert(t2 <= t2, ""); + static_assert(t2 <= t3, ""); + static_assert(t3 <= t3, ""); + static_assert(t1 <= t3, ""); + + static_assert(t2 > t1, ""); + static_assert(t3 > t2, ""); + static_assert(t3 > t1, ""); + + static_assert(t2 >= t2, ""); + static_assert(t2 >= t1, ""); + static_assert(t3 >= t3, ""); + static_assert(t3 >= t2, ""); + static_assert(t1 >= t1, ""); + static_assert(t3 >= t1, ""); +} + +TEST(Time, Infinity) { + constexpr absl::Time ifuture = absl::InfiniteFuture(); + constexpr absl::Time ipast = absl::InfinitePast(); + + static_assert(ifuture == ifuture, ""); + static_assert(ipast == ipast, ""); + static_assert(ipast < ifuture, ""); + static_assert(ifuture > ipast, ""); + + // Arithmetic saturates + EXPECT_EQ(ifuture, ifuture + absl::Seconds(1)); + EXPECT_EQ(ifuture, ifuture - absl::Seconds(1)); + EXPECT_EQ(ipast, ipast + absl::Seconds(1)); + EXPECT_EQ(ipast, ipast - absl::Seconds(1)); + + EXPECT_EQ(absl::InfiniteDuration(), ifuture - ifuture); + EXPECT_EQ(absl::InfiniteDuration(), ifuture - ipast); + EXPECT_EQ(-absl::InfiniteDuration(), ipast - ifuture); + EXPECT_EQ(-absl::InfiniteDuration(), ipast - ipast); + + constexpr absl::Time t = absl::UnixEpoch(); // Any finite time. + static_assert(t < ifuture, ""); + static_assert(t > ipast, ""); +} + +TEST(Time, FloorConversion) { +#define TEST_FLOOR_CONVERSION(TO, FROM) \ + EXPECT_EQ(1, TO(FROM(1001))); \ + EXPECT_EQ(1, TO(FROM(1000))); \ + EXPECT_EQ(0, TO(FROM(999))); \ + EXPECT_EQ(0, TO(FROM(1))); \ + EXPECT_EQ(0, TO(FROM(0))); \ + EXPECT_EQ(-1, TO(FROM(-1))); \ + EXPECT_EQ(-1, TO(FROM(-999))); \ + EXPECT_EQ(-1, TO(FROM(-1000))); \ + EXPECT_EQ(-2, TO(FROM(-1001))); + + TEST_FLOOR_CONVERSION(absl::ToUnixMicros, absl::FromUnixNanos); + TEST_FLOOR_CONVERSION(absl::ToUnixMillis, absl::FromUnixMicros); + TEST_FLOOR_CONVERSION(absl::ToUnixSeconds, absl::FromUnixMillis); + TEST_FLOOR_CONVERSION(absl::ToTimeT, absl::FromUnixMillis); + +#undef TEST_FLOOR_CONVERSION + + // Tests ToUnixNanos. + EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(3) / 2)); + EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1))); + EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1) / 2)); + EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(0))); + EXPECT_EQ(-1, + absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1) / 2)); + EXPECT_EQ(-1, absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1))); + EXPECT_EQ(-2, + absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(3) / 2)); + + // Tests ToUniversal, which uses a different epoch than the tests above. + EXPECT_EQ(1, + absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(101))); + EXPECT_EQ(1, + absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(100))); + EXPECT_EQ(0, + absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(99))); + EXPECT_EQ(0, + absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(1))); + EXPECT_EQ(0, + absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(0))); + EXPECT_EQ(-1, + absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-1))); + EXPECT_EQ(-1, + absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-99))); + EXPECT_EQ( + -1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-100))); + EXPECT_EQ( + -2, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-101))); + + // Tests ToTimespec()/TimeFromTimespec() + const struct { + absl::Time t; + timespec ts; + } to_ts[] = { + {absl::FromUnixSeconds(1) + absl::Nanoseconds(1), {1, 1}}, + {absl::FromUnixSeconds(1) + absl::Nanoseconds(1) / 2, {1, 0}}, + {absl::FromUnixSeconds(1) + absl::Nanoseconds(0), {1, 0}}, + {absl::FromUnixSeconds(0) + absl::Nanoseconds(0), {0, 0}}, + {absl::FromUnixSeconds(0) - absl::Nanoseconds(1) / 2, {-1, 999999999}}, + {absl::FromUnixSeconds(0) - absl::Nanoseconds(1), {-1, 999999999}}, + {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1), {-1, 1}}, + {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1) / 2, {-1, 0}}, + {absl::FromUnixSeconds(-1) + absl::Nanoseconds(0), {-1, 0}}, + {absl::FromUnixSeconds(-1) - absl::Nanoseconds(1) / 2, {-2, 999999999}}, + }; + for (const auto& test : to_ts) { + EXPECT_THAT(absl::ToTimespec(test.t), TimespecMatcher(test.ts)); + } + const struct { + timespec ts; + absl::Time t; + } from_ts[] = { + {{1, 1}, absl::FromUnixSeconds(1) + absl::Nanoseconds(1)}, + {{1, 0}, absl::FromUnixSeconds(1) + absl::Nanoseconds(0)}, + {{0, 0}, absl::FromUnixSeconds(0) + absl::Nanoseconds(0)}, + {{0, -1}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)}, + {{-1, 999999999}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)}, + {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(1)}, + {{-1, 0}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(0)}, + {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)}, + {{-2, 999999999}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)}, + }; + for (const auto& test : from_ts) { + EXPECT_EQ(test.t, absl::TimeFromTimespec(test.ts)); + } + + // Tests ToTimeval()/TimeFromTimeval() (same as timespec above) + const struct { + absl::Time t; + timeval tv; + } to_tv[] = { + {absl::FromUnixSeconds(1) + absl::Microseconds(1), {1, 1}}, + {absl::FromUnixSeconds(1) + absl::Microseconds(1) / 2, {1, 0}}, + {absl::FromUnixSeconds(1) + absl::Microseconds(0), {1, 0}}, + {absl::FromUnixSeconds(0) + absl::Microseconds(0), {0, 0}}, + {absl::FromUnixSeconds(0) - absl::Microseconds(1) / 2, {-1, 999999}}, + {absl::FromUnixSeconds(0) - absl::Microseconds(1), {-1, 999999}}, + {absl::FromUnixSeconds(-1) + absl::Microseconds(1), {-1, 1}}, + {absl::FromUnixSeconds(-1) + absl::Microseconds(1) / 2, {-1, 0}}, + {absl::FromUnixSeconds(-1) + absl::Microseconds(0), {-1, 0}}, + {absl::FromUnixSeconds(-1) - absl::Microseconds(1) / 2, {-2, 999999}}, + }; + for (const auto& test : to_tv) { + EXPECT_THAT(ToTimeval(test.t), TimevalMatcher(test.tv)); + } + const struct { + timeval tv; + absl::Time t; + } from_tv[] = { + {{1, 1}, absl::FromUnixSeconds(1) + absl::Microseconds(1)}, + {{1, 0}, absl::FromUnixSeconds(1) + absl::Microseconds(0)}, + {{0, 0}, absl::FromUnixSeconds(0) + absl::Microseconds(0)}, + {{0, -1}, absl::FromUnixSeconds(0) - absl::Microseconds(1)}, + {{-1, 999999}, absl::FromUnixSeconds(0) - absl::Microseconds(1)}, + {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Microseconds(1)}, + {{-1, 0}, absl::FromUnixSeconds(-1) + absl::Microseconds(0)}, + {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)}, + {{-2, 999999}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)}, + }; + for (const auto& test : from_tv) { + EXPECT_EQ(test.t, absl::TimeFromTimeval(test.tv)); + } + + // Tests flooring near negative infinity. + const int64_t min_plus_1 = std::numeric_limits<int64_t>::min() + 1; + EXPECT_EQ(min_plus_1, absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1))); + EXPECT_EQ(std::numeric_limits<int64_t>::min(), + absl::ToUnixSeconds( + absl::FromUnixSeconds(min_plus_1) - absl::Nanoseconds(1) / 2)); + + // Tests flooring near positive infinity. + EXPECT_EQ(std::numeric_limits<int64_t>::max(), + absl::ToUnixSeconds(absl::FromUnixSeconds( + std::numeric_limits<int64_t>::max()) + absl::Nanoseconds(1) / 2)); + EXPECT_EQ(std::numeric_limits<int64_t>::max(), + absl::ToUnixSeconds( + absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()))); + EXPECT_EQ(std::numeric_limits<int64_t>::max() - 1, + absl::ToUnixSeconds(absl::FromUnixSeconds( + std::numeric_limits<int64_t>::max()) - absl::Nanoseconds(1) / 2)); +} + +TEST(Time, RoundtripConversion) { +#define TEST_CONVERSION_ROUND_TRIP(SOURCE, FROM, TO, MATCHER) \ + EXPECT_THAT(TO(FROM(SOURCE)), MATCHER(SOURCE)) + + // FromUnixNanos() and ToUnixNanos() + int64_t now_ns = absl::GetCurrentTimeNanos(); + TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixNanos, absl::ToUnixNanos, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixNanos, absl::ToUnixNanos, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixNanos, absl::ToUnixNanos, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(now_ns, absl::FromUnixNanos, absl::ToUnixNanos, + testing::Eq) + << now_ns; + + // FromUnixMicros() and ToUnixMicros() + int64_t now_us = absl::GetCurrentTimeNanos() / 1000; + TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMicros, absl::ToUnixMicros, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMicros, absl::ToUnixMicros, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMicros, absl::ToUnixMicros, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(now_us, absl::FromUnixMicros, absl::ToUnixMicros, + testing::Eq) + << now_us; + + // FromUnixMillis() and ToUnixMillis() + int64_t now_ms = absl::GetCurrentTimeNanos() / 1000000; + TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMillis, absl::ToUnixMillis, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMillis, absl::ToUnixMillis, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMillis, absl::ToUnixMillis, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(now_ms, absl::FromUnixMillis, absl::ToUnixMillis, + testing::Eq) + << now_ms; + + // FromUnixSeconds() and ToUnixSeconds() + int64_t now_s = std::time(nullptr); + TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixSeconds, absl::ToUnixSeconds, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixSeconds, absl::ToUnixSeconds, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixSeconds, absl::ToUnixSeconds, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(now_s, absl::FromUnixSeconds, absl::ToUnixSeconds, + testing::Eq) + << now_s; + + // FromTimeT() and ToTimeT() + time_t now_time_t = std::time(nullptr); + TEST_CONVERSION_ROUND_TRIP(-1, absl::FromTimeT, absl::ToTimeT, testing::Eq); + TEST_CONVERSION_ROUND_TRIP(0, absl::FromTimeT, absl::ToTimeT, testing::Eq); + TEST_CONVERSION_ROUND_TRIP(1, absl::FromTimeT, absl::ToTimeT, testing::Eq); + TEST_CONVERSION_ROUND_TRIP(now_time_t, absl::FromTimeT, absl::ToTimeT, + testing::Eq) + << now_time_t; + + // TimeFromTimeval() and ToTimeval() + timeval tv; + tv.tv_sec = -1; + tv.tv_usec = 0; + TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, + TimevalMatcher); + tv.tv_sec = -1; + tv.tv_usec = 999999; + TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, + TimevalMatcher); + tv.tv_sec = 0; + tv.tv_usec = 0; + TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, + TimevalMatcher); + tv.tv_sec = 0; + tv.tv_usec = 1; + TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, + TimevalMatcher); + tv.tv_sec = 1; + tv.tv_usec = 0; + TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, + TimevalMatcher); + + // TimeFromTimespec() and ToTimespec() + timespec ts; + ts.tv_sec = -1; + ts.tv_nsec = 0; + TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, + TimespecMatcher); + ts.tv_sec = -1; + ts.tv_nsec = 999999999; + TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, + TimespecMatcher); + ts.tv_sec = 0; + ts.tv_nsec = 0; + TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, + TimespecMatcher); + ts.tv_sec = 0; + ts.tv_nsec = 1; + TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, + TimespecMatcher); + ts.tv_sec = 1; + ts.tv_nsec = 0; + TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, + TimespecMatcher); + + // FromUDate() and ToUDate() + double now_ud = absl::GetCurrentTimeNanos() / 1000000; + TEST_CONVERSION_ROUND_TRIP(-1.5, absl::FromUDate, absl::ToUDate, + testing::DoubleEq); + TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUDate, absl::ToUDate, + testing::DoubleEq); + TEST_CONVERSION_ROUND_TRIP(-0.5, absl::FromUDate, absl::ToUDate, + testing::DoubleEq); + TEST_CONVERSION_ROUND_TRIP(0, absl::FromUDate, absl::ToUDate, + testing::DoubleEq); + TEST_CONVERSION_ROUND_TRIP(0.5, absl::FromUDate, absl::ToUDate, + testing::DoubleEq); + TEST_CONVERSION_ROUND_TRIP(1, absl::FromUDate, absl::ToUDate, + testing::DoubleEq); + TEST_CONVERSION_ROUND_TRIP(1.5, absl::FromUDate, absl::ToUDate, + testing::DoubleEq); + TEST_CONVERSION_ROUND_TRIP(now_ud, absl::FromUDate, absl::ToUDate, + testing::DoubleEq) + << std::fixed << std::setprecision(17) << now_ud; + + // FromUniversal() and ToUniversal() + int64_t now_uni = ((719162LL * (24 * 60 * 60)) * (1000 * 1000 * 10)) + + (absl::GetCurrentTimeNanos() / 100); + TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUniversal, absl::ToUniversal, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(0, absl::FromUniversal, absl::ToUniversal, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(1, absl::FromUniversal, absl::ToUniversal, + testing::Eq); + TEST_CONVERSION_ROUND_TRIP(now_uni, absl::FromUniversal, absl::ToUniversal, + testing::Eq) + << now_uni; + +#undef TEST_CONVERSION_ROUND_TRIP +} + +TEST(Time, ConvertDateTime) { + const absl::TimeZone utc = absl::UTCTimeZone(); + const absl::TimeZone goog = + absl::time_internal::LoadTimeZone("America/Los_Angeles"); + const absl::TimeZone nyc = + absl::time_internal::LoadTimeZone("America/New_York"); + const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)"; + + // A simple case of normalization. + absl::TimeConversion oct32 = ConvertDateTime(2013, 10, 32, 8, 30, 0, goog); + EXPECT_TRUE(oct32.normalized); + EXPECT_EQ(absl::TimeConversion::UNIQUE, oct32.kind); + absl::TimeConversion nov01 = ConvertDateTime(2013, 11, 1, 8, 30, 0, goog); + EXPECT_FALSE(nov01.normalized); + EXPECT_EQ(absl::TimeConversion::UNIQUE, nov01.kind); + EXPECT_EQ(oct32.pre, nov01.pre); + EXPECT_EQ("Fri, 1 Nov 2013 08:30:00 -0700 (PDT)", + absl::FormatTime(fmt, nov01.pre, goog)); + + // A Spring DST transition, when there is a gap in civil time + // and we prefer the later of the possible interpretations of a + // non-existent time. + absl::TimeConversion mar13 = ConvertDateTime(2011, 3, 13, 2, 15, 0, nyc); + EXPECT_FALSE(mar13.normalized); + EXPECT_EQ(absl::TimeConversion::SKIPPED, mar13.kind); + EXPECT_EQ("Sun, 13 Mar 2011 03:15:00 -0400 (EDT)", + absl::FormatTime(fmt, mar13.pre, nyc)); + EXPECT_EQ("Sun, 13 Mar 2011 03:00:00 -0400 (EDT)", + absl::FormatTime(fmt, mar13.trans, nyc)); + EXPECT_EQ("Sun, 13 Mar 2011 01:15:00 -0500 (EST)", + absl::FormatTime(fmt, mar13.post, nyc)); + EXPECT_EQ(mar13.pre, absl::FromDateTime(2011, 3, 13, 2, 15, 0, nyc)); + + // A Fall DST transition, when civil times are repeated and + // we prefer the earlier of the possible interpretations of an + // ambiguous time. + absl::TimeConversion nov06 = ConvertDateTime(2011, 11, 6, 1, 15, 0, nyc); + EXPECT_FALSE(nov06.normalized); + EXPECT_EQ(absl::TimeConversion::REPEATED, nov06.kind); + EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0400 (EDT)", + absl::FormatTime(fmt, nov06.pre, nyc)); + EXPECT_EQ("Sun, 6 Nov 2011 01:00:00 -0500 (EST)", + absl::FormatTime(fmt, nov06.trans, nyc)); + EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0500 (EST)", + absl::FormatTime(fmt, nov06.post, nyc)); + EXPECT_EQ(nov06.pre, absl::FromDateTime(2011, 11, 6, 1, 15, 0, nyc)); + + // Check that (time_t) -1 is handled correctly. + absl::TimeConversion minus1 = ConvertDateTime(1969, 12, 31, 18, 59, 59, nyc); + EXPECT_FALSE(minus1.normalized); + EXPECT_EQ(absl::TimeConversion::UNIQUE, minus1.kind); + EXPECT_EQ(-1, absl::ToTimeT(minus1.pre)); + EXPECT_EQ("Wed, 31 Dec 1969 18:59:59 -0500 (EST)", + absl::FormatTime(fmt, minus1.pre, nyc)); + EXPECT_EQ("Wed, 31 Dec 1969 23:59:59 +0000 (UTC)", + absl::FormatTime(fmt, minus1.pre, utc)); +} + +// FromDateTime(year, mon, day, hour, min, sec, UTCTimeZone()) has +// a specialized fastpath implementation which we exercise here. +TEST(Time, FromDateTimeUTC) { + const absl::TimeZone utc = absl::UTCTimeZone(); + const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)"; + const int kMax = std::numeric_limits<int>::max(); + const int kMin = std::numeric_limits<int>::min(); + absl::Time t; + + // 292091940881 is the last positive year to use the fastpath. + t = absl::FromDateTime(292091940881, kMax, kMax, kMax, kMax, kMax, utc); + EXPECT_EQ("Fri, 25 Nov 292277026596 12:21:07 +0000 (UTC)", + absl::FormatTime(fmt, t, utc)); + t = absl::FromDateTime(292091940882, kMax, kMax, kMax, kMax, kMax, utc); + EXPECT_EQ("infinite-future", absl::FormatTime(fmt, t, utc)); // no overflow + t = absl::FromDateTime( + std::numeric_limits<int64_t>::max(), kMax, kMax, kMax, kMax, kMax, utc); + EXPECT_EQ("infinite-future", absl::FormatTime(fmt, t, utc)); // no overflow + + // -292091936940 is the last negative year to use the fastpath. + t = absl::FromDateTime(-292091936940, kMin, kMin, kMin, kMin, kMin, utc); + EXPECT_EQ("Fri, 1 Nov -292277022657 10:37:52 +0000 (UTC)", + absl::FormatTime(fmt, t, utc)); + t = absl::FromDateTime(-292091936941, kMin, kMin, kMin, kMin, kMin, utc); + EXPECT_EQ("infinite-past", absl::FormatTime(fmt, t, utc)); // no underflow + t = absl::FromDateTime( + std::numeric_limits<int64_t>::min(), kMin, kMin, kMin, kMin, kMin, utc); + EXPECT_EQ("infinite-past", absl::FormatTime(fmt, t, utc)); // no overflow + + // Check that we're counting leap years correctly. + t = absl::FromDateTime(1900, 2, 28, 23, 59, 59, utc); + EXPECT_EQ("Wed, 28 Feb 1900 23:59:59 +0000 (UTC)", + absl::FormatTime(fmt, t, utc)); + t = absl::FromDateTime(1900, 3, 1, 0, 0, 0, utc); + EXPECT_EQ("Thu, 1 Mar 1900 00:00:00 +0000 (UTC)", + absl::FormatTime(fmt, t, utc)); + t = absl::FromDateTime(2000, 2, 29, 23, 59, 59, utc); + EXPECT_EQ("Tue, 29 Feb 2000 23:59:59 +0000 (UTC)", + absl::FormatTime(fmt, t, utc)); + t = absl::FromDateTime(2000, 3, 1, 0, 0, 0, utc); + EXPECT_EQ("Wed, 1 Mar 2000 00:00:00 +0000 (UTC)", + absl::FormatTime(fmt, t, utc)); + + // Check normalization. + const std::string ymdhms = "%Y-%m-%d %H:%M:%S"; + t = absl::FromDateTime(2015, 1, 1, 0, 0, 60, utc); + EXPECT_EQ("2015-01-01 00:01:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, 1, 1, 0, 60, 0, utc); + EXPECT_EQ("2015-01-01 01:00:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, 1, 1, 24, 0, 0, utc); + EXPECT_EQ("2015-01-02 00:00:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, 1, 32, 0, 0, 0, utc); + EXPECT_EQ("2015-02-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, 13, 1, 0, 0, 0, utc); + EXPECT_EQ("2016-01-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, 13, 32, 60, 60, 60, utc); + EXPECT_EQ("2016-02-03 13:01:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, 1, 1, 0, 0, -1, utc); + EXPECT_EQ("2014-12-31 23:59:59", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, 1, 1, 0, -1, 0, utc); + EXPECT_EQ("2014-12-31 23:59:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, 1, 1, -1, 0, 0, utc); + EXPECT_EQ("2014-12-31 23:00:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, 1, -1, 0, 0, 0, utc); + EXPECT_EQ("2014-12-30 00:00:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, -1, 1, 0, 0, 0, utc); + EXPECT_EQ("2014-11-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); + t = absl::FromDateTime(2015, -1, -1, -1, -1, -1, utc); + EXPECT_EQ("2014-10-29 22:58:59", absl::FormatTime(ymdhms, t, utc)); +} + +TEST(Time, ToTM) { + const absl::TimeZone utc = absl::UTCTimeZone(); + + // Compares the results of ToTM() to gmtime_r() for lots of times over the + // course of a few days. + const absl::Time start = absl::FromDateTime(2014, 1, 2, 3, 4, 5, utc); + const absl::Time end = absl::FromDateTime(2014, 1, 5, 3, 4, 5, utc); + for (absl::Time t = start; t < end; t += absl::Seconds(30)) { + const struct tm tm_bt = ToTM(t, utc); + const time_t tt = absl::ToTimeT(t); + struct tm tm_lc; +#ifdef _WIN32 + gmtime_s(&tm_lc, &tt); +#else + gmtime_r(&tt, &tm_lc); +#endif + EXPECT_EQ(tm_lc.tm_year, tm_bt.tm_year); + EXPECT_EQ(tm_lc.tm_mon, tm_bt.tm_mon); + EXPECT_EQ(tm_lc.tm_mday, tm_bt.tm_mday); + EXPECT_EQ(tm_lc.tm_hour, tm_bt.tm_hour); + EXPECT_EQ(tm_lc.tm_min, tm_bt.tm_min); + EXPECT_EQ(tm_lc.tm_sec, tm_bt.tm_sec); + EXPECT_EQ(tm_lc.tm_wday, tm_bt.tm_wday); + EXPECT_EQ(tm_lc.tm_yday, tm_bt.tm_yday); + EXPECT_EQ(tm_lc.tm_isdst, tm_bt.tm_isdst); + + ASSERT_FALSE(HasFailure()); + } + + // Checks that the tm_isdst field is correct when in standard time. + const absl::TimeZone nyc = + absl::time_internal::LoadTimeZone("America/New_York"); + absl::Time t = absl::FromDateTime(2014, 3, 1, 0, 0, 0, nyc); + struct tm tm = ToTM(t, nyc); + EXPECT_FALSE(tm.tm_isdst); + + // Checks that the tm_isdst field is correct when in daylight time. + t = absl::FromDateTime(2014, 4, 1, 0, 0, 0, nyc); + tm = ToTM(t, nyc); + EXPECT_TRUE(tm.tm_isdst); + + // Checks overflow. + tm = ToTM(absl::InfiniteFuture(), nyc); + EXPECT_EQ(std::numeric_limits<int>::max() - 1900, tm.tm_year); + EXPECT_EQ(11, tm.tm_mon); + EXPECT_EQ(31, tm.tm_mday); + EXPECT_EQ(23, tm.tm_hour); + EXPECT_EQ(59, tm.tm_min); + EXPECT_EQ(59, tm.tm_sec); + EXPECT_EQ(4, tm.tm_wday); + EXPECT_EQ(364, tm.tm_yday); + EXPECT_FALSE(tm.tm_isdst); + + // Checks underflow. + tm = ToTM(absl::InfinitePast(), nyc); + EXPECT_EQ(std::numeric_limits<int>::min(), tm.tm_year); + EXPECT_EQ(0, tm.tm_mon); + EXPECT_EQ(1, tm.tm_mday); + EXPECT_EQ(0, tm.tm_hour); + EXPECT_EQ(0, tm.tm_min); + EXPECT_EQ(0, tm.tm_sec); + EXPECT_EQ(0, tm.tm_wday); + EXPECT_EQ(0, tm.tm_yday); + EXPECT_FALSE(tm.tm_isdst); +} + +TEST(Time, FromTM) { + const absl::TimeZone nyc = + absl::time_internal::LoadTimeZone("America/New_York"); + + // Verifies that tm_isdst doesn't affect anything when the time is unique. + struct tm tm; + std::memset(&tm, 0, sizeof(tm)); + tm.tm_year = 2014 - 1900; + tm.tm_mon = 6 - 1; + tm.tm_mday = 28; + tm.tm_hour = 1; + tm.tm_min = 2; + tm.tm_sec = 3; + tm.tm_isdst = -1; + absl::Time t = FromTM(tm, nyc); + EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST + tm.tm_isdst = 0; + t = FromTM(tm, nyc); + EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST + tm.tm_isdst = 1; + t = FromTM(tm, nyc); + EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST + + // Adjusts tm to refer to an ambiguous time. + tm.tm_year = 2014 - 1900; + tm.tm_mon = 11 - 1; + tm.tm_mday = 2; + tm.tm_hour = 1; + tm.tm_min = 30; + tm.tm_sec = 42; + tm.tm_isdst = -1; + t = FromTM(tm, nyc); + EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST + tm.tm_isdst = 0; + t = FromTM(tm, nyc); + EXPECT_EQ("2014-11-02T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD + tm.tm_isdst = 1; + t = FromTM(tm, nyc); + EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST + + // Adjusts tm to refer to a skipped time. + tm.tm_year = 2014 - 1900; + tm.tm_mon = 3 - 1; + tm.tm_mday = 9; + tm.tm_hour = 2; + tm.tm_min = 30; + tm.tm_sec = 42; + tm.tm_isdst = -1; + t = FromTM(tm, nyc); + EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST + tm.tm_isdst = 0; + t = FromTM(tm, nyc); + EXPECT_EQ("2014-03-09T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD + tm.tm_isdst = 1; + t = FromTM(tm, nyc); + EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST +} + +TEST(Time, TMRoundTrip) { + const absl::TimeZone nyc = + absl::time_internal::LoadTimeZone("America/New_York"); + + // Test round-tripping across a skipped transition + absl::Time start = absl::FromDateTime(2014, 3, 9, 0, 0, 0, nyc); + absl::Time end = absl::FromDateTime(2014, 3, 9, 4, 0, 0, nyc); + for (absl::Time t = start; t < end; t += absl::Minutes(1)) { + struct tm tm = ToTM(t, nyc); + absl::Time rt = FromTM(tm, nyc); + EXPECT_EQ(rt, t); + } + + // Test round-tripping across an ambiguous transition + start = absl::FromDateTime(2014, 11, 2, 0, 0, 0, nyc); + end = absl::FromDateTime(2014, 11, 2, 4, 0, 0, nyc); + for (absl::Time t = start; t < end; t += absl::Minutes(1)) { + struct tm tm = ToTM(t, nyc); + absl::Time rt = FromTM(tm, nyc); + EXPECT_EQ(rt, t); + } + + // Test round-tripping of unique instants crossing a day boundary + start = absl::FromDateTime(2014, 6, 27, 22, 0, 0, nyc); + end = absl::FromDateTime(2014, 6, 28, 4, 0, 0, nyc); + for (absl::Time t = start; t < end; t += absl::Minutes(1)) { + struct tm tm = ToTM(t, nyc); + absl::Time rt = FromTM(tm, nyc); + EXPECT_EQ(rt, t); + } +} + +TEST(Time, Range) { + // The API's documented range is +/- 100 billion years. + const absl::Duration range = absl::Hours(24) * 365.2425 * 100000000000; + + // Arithmetic and comparison still works at +/-range around base values. + absl::Time bases[2] = {absl::UnixEpoch(), absl::Now()}; + for (const auto base : bases) { + absl::Time bottom = base - range; + EXPECT_GT(bottom, bottom - absl::Nanoseconds(1)); + EXPECT_LT(bottom, bottom + absl::Nanoseconds(1)); + absl::Time top = base + range; + EXPECT_GT(top, top - absl::Nanoseconds(1)); + EXPECT_LT(top, top + absl::Nanoseconds(1)); + absl::Duration full_range = 2 * range; + EXPECT_EQ(full_range, top - bottom); + EXPECT_EQ(-full_range, bottom - top); + } +} + +TEST(Time, Limits) { + // It is an implementation detail that Time().rep_ == ZeroDuration(), + // and that the resolution of a Duration is 1/4 of a nanosecond. + const absl::Time zero; + const absl::Time max = + zero + absl::Seconds(std::numeric_limits<int64_t>::max()) + + absl::Nanoseconds(999999999) + absl::Nanoseconds(3) / 4; + const absl::Time min = + zero + absl::Seconds(std::numeric_limits<int64_t>::min()); + + // Some simple max/min bounds checks. + EXPECT_LT(max, absl::InfiniteFuture()); + EXPECT_GT(min, absl::InfinitePast()); + EXPECT_LT(zero, max); + EXPECT_GT(zero, min); + EXPECT_GE(absl::UnixEpoch(), min); + EXPECT_LT(absl::UnixEpoch(), max); + + // Check sign of Time differences. + EXPECT_LT(absl::ZeroDuration(), max - zero); + EXPECT_LT(absl::ZeroDuration(), + zero - absl::Nanoseconds(1) / 4 - min); // avoid zero - min + + // Arithmetic works at max - 0.25ns and min + 0.25ns. + EXPECT_GT(max, max - absl::Nanoseconds(1) / 4); + EXPECT_LT(min, min + absl::Nanoseconds(1) / 4); +} + +TEST(Time, ConversionSaturation) { + const absl::TimeZone utc = absl::UTCTimeZone(); + absl::Time t; + + const auto max_time_t = std::numeric_limits<time_t>::max(); + const auto min_time_t = std::numeric_limits<time_t>::min(); + time_t tt = max_time_t - 1; + t = absl::FromTimeT(tt); + tt = absl::ToTimeT(t); + EXPECT_EQ(max_time_t - 1, tt); + t += absl::Seconds(1); + tt = absl::ToTimeT(t); + EXPECT_EQ(max_time_t, tt); + t += absl::Seconds(1); // no effect + tt = absl::ToTimeT(t); + EXPECT_EQ(max_time_t, tt); + + tt = min_time_t + 1; + t = absl::FromTimeT(tt); + tt = absl::ToTimeT(t); + EXPECT_EQ(min_time_t + 1, tt); + t -= absl::Seconds(1); + tt = absl::ToTimeT(t); + EXPECT_EQ(min_time_t, tt); + t -= absl::Seconds(1); // no effect + tt = absl::ToTimeT(t); + EXPECT_EQ(min_time_t, tt); + + const auto max_timeval_sec = + std::numeric_limits<decltype(timeval::tv_sec)>::max(); + const auto min_timeval_sec = + std::numeric_limits<decltype(timeval::tv_sec)>::min(); + timeval tv; + tv.tv_sec = max_timeval_sec; + tv.tv_usec = 999998; + t = absl::TimeFromTimeval(tv); + tv = ToTimeval(t); + EXPECT_EQ(max_timeval_sec, tv.tv_sec); + EXPECT_EQ(999998, tv.tv_usec); + t += absl::Microseconds(1); + tv = ToTimeval(t); + EXPECT_EQ(max_timeval_sec, tv.tv_sec); + EXPECT_EQ(999999, tv.tv_usec); + t += absl::Microseconds(1); // no effect + tv = ToTimeval(t); + EXPECT_EQ(max_timeval_sec, tv.tv_sec); + EXPECT_EQ(999999, tv.tv_usec); + + tv.tv_sec = min_timeval_sec; + tv.tv_usec = 1; + t = absl::TimeFromTimeval(tv); + tv = ToTimeval(t); + EXPECT_EQ(min_timeval_sec, tv.tv_sec); + EXPECT_EQ(1, tv.tv_usec); + t -= absl::Microseconds(1); + tv = ToTimeval(t); + EXPECT_EQ(min_timeval_sec, tv.tv_sec); + EXPECT_EQ(0, tv.tv_usec); + t -= absl::Microseconds(1); // no effect + tv = ToTimeval(t); + EXPECT_EQ(min_timeval_sec, tv.tv_sec); + EXPECT_EQ(0, tv.tv_usec); + + const auto max_timespec_sec = + std::numeric_limits<decltype(timespec::tv_sec)>::max(); + const auto min_timespec_sec = + std::numeric_limits<decltype(timespec::tv_sec)>::min(); + timespec ts; + ts.tv_sec = max_timespec_sec; + ts.tv_nsec = 999999998; + t = absl::TimeFromTimespec(ts); + ts = absl::ToTimespec(t); + EXPECT_EQ(max_timespec_sec, ts.tv_sec); + EXPECT_EQ(999999998, ts.tv_nsec); + t += absl::Nanoseconds(1); + ts = absl::ToTimespec(t); + EXPECT_EQ(max_timespec_sec, ts.tv_sec); + EXPECT_EQ(999999999, ts.tv_nsec); + t += absl::Nanoseconds(1); // no effect + ts = absl::ToTimespec(t); + EXPECT_EQ(max_timespec_sec, ts.tv_sec); + EXPECT_EQ(999999999, ts.tv_nsec); + + ts.tv_sec = min_timespec_sec; + ts.tv_nsec = 1; + t = absl::TimeFromTimespec(ts); + ts = absl::ToTimespec(t); + EXPECT_EQ(min_timespec_sec, ts.tv_sec); + EXPECT_EQ(1, ts.tv_nsec); + t -= absl::Nanoseconds(1); + ts = absl::ToTimespec(t); + EXPECT_EQ(min_timespec_sec, ts.tv_sec); + EXPECT_EQ(0, ts.tv_nsec); + t -= absl::Nanoseconds(1); // no effect + ts = absl::ToTimespec(t); + EXPECT_EQ(min_timespec_sec, ts.tv_sec); + EXPECT_EQ(0, ts.tv_nsec); + + // Checks how Time::In() saturates on infinities. + absl::Time::Breakdown bd = absl::InfiniteFuture().In(utc); + ABSL_INTERNAL_EXPECT_TIME(bd, std::numeric_limits<int64_t>::max(), 12, 31, 23, + 59, 59, 0, false, "-0000"); + EXPECT_EQ(absl::InfiniteDuration(), bd.subsecond); + EXPECT_EQ(4, bd.weekday); // Thursday + EXPECT_EQ(365, bd.yearday); + bd = absl::InfinitePast().In(utc); + ABSL_INTERNAL_EXPECT_TIME(bd, std::numeric_limits<int64_t>::min(), 1, 1, 0, 0, + 0, 0, false, "-0000"); + EXPECT_EQ(-absl::InfiniteDuration(), bd.subsecond); + EXPECT_EQ(7, bd.weekday); // Sunday + EXPECT_EQ(1, bd.yearday); + + // Approach the maximal Time value from below. + t = absl::FromDateTime(292277026596, 12, 4, 15, 30, 6, utc); + EXPECT_EQ("292277026596-12-04T15:30:06+00:00", + absl::FormatTime(absl::RFC3339_full, t, utc)); + t = absl::FromDateTime(292277026596, 12, 4, 15, 30, 7, utc); + EXPECT_EQ("292277026596-12-04T15:30:07+00:00", + absl::FormatTime(absl::RFC3339_full, t, utc)); + EXPECT_EQ( + absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), t); + + // Checks that we can also get the maximal Time value for a far-east zone. + const absl::TimeZone plus14 = absl::FixedTimeZone(14 * 60 * 60); + t = absl::FromDateTime(292277026596, 12, 5, 5, 30, 7, plus14); + EXPECT_EQ("292277026596-12-05T05:30:07+14:00", + absl::FormatTime(absl::RFC3339_full, t, plus14)); + EXPECT_EQ( + absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), t); + + // One second later should push us to infinity. + t = absl::FromDateTime(292277026596, 12, 4, 15, 30, 8, utc); + EXPECT_EQ("infinite-future", absl::FormatTime(absl::RFC3339_full, t, utc)); + + // Approach the minimal Time value from above. + t = absl::FromDateTime(-292277022657, 1, 27, 8, 29, 53, utc); + EXPECT_EQ("-292277022657-01-27T08:29:53+00:00", + absl::FormatTime(absl::RFC3339_full, t, utc)); + t = absl::FromDateTime(-292277022657, 1, 27, 8, 29, 52, utc); + EXPECT_EQ("-292277022657-01-27T08:29:52+00:00", + absl::FormatTime(absl::RFC3339_full, t, utc)); + EXPECT_EQ( + absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), t); + + // Checks that we can also get the minimal Time value for a far-west zone. + const absl::TimeZone minus12 = absl::FixedTimeZone(-12 * 60 * 60); + t = absl::FromDateTime(-292277022657, 1, 26, 20, 29, 52, minus12); + EXPECT_EQ("-292277022657-01-26T20:29:52-12:00", + absl::FormatTime(absl::RFC3339_full, t, minus12)); + EXPECT_EQ( + absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), t); + + // One second before should push us to -infinity. + t = absl::FromDateTime(-292277022657, 1, 27, 8, 29, 51, utc); + EXPECT_EQ("infinite-past", absl::FormatTime(absl::RFC3339_full, t, utc)); +} + +// In zones with POSIX-style recurring rules we use special logic to +// handle conversions in the distant future. Here we check the limits +// of those conversions, particularly with respect to integer overflow. +TEST(Time, ExtendedConversionSaturation) { + const absl::TimeZone syd = + absl::time_internal::LoadTimeZone("Australia/Sydney"); + const absl::TimeZone nyc = + absl::time_internal::LoadTimeZone("America/New_York"); + const absl::Time max = + absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()); + absl::Time::Breakdown bd; + absl::Time t; + + // The maximal time converted in each zone. + bd = max.In(syd); + ABSL_INTERNAL_EXPECT_TIME(bd, 292277026596, 12, 5, 2, 30, 7, 39600, true, + "AEDT"); + t = absl::FromDateTime(292277026596, 12, 5, 2, 30, 7, syd); + EXPECT_EQ(max, t); + bd = max.In(nyc); + ABSL_INTERNAL_EXPECT_TIME(bd, 292277026596, 12, 4, 10, 30, 7, -18000, false, + "EST"); + t = absl::FromDateTime(292277026596, 12, 4, 10, 30, 7, nyc); + EXPECT_EQ(max, t); + + // One second later should push us to infinity. + t = absl::FromDateTime(292277026596, 12, 5, 2, 30, 8, syd); + EXPECT_EQ(absl::InfiniteFuture(), t); + t = absl::FromDateTime(292277026596, 12, 4, 10, 30, 8, nyc); + EXPECT_EQ(absl::InfiniteFuture(), t); + + // And we should stick there. + t = absl::FromDateTime(292277026596, 12, 5, 2, 30, 9, syd); + EXPECT_EQ(absl::InfiniteFuture(), t); + t = absl::FromDateTime(292277026596, 12, 4, 10, 30, 9, nyc); + EXPECT_EQ(absl::InfiniteFuture(), t); + + // All the way up to a saturated date/time, without overflow. + t = absl::FromDateTime( + std::numeric_limits<int64_t>::max(), 12, 31, 23, 59, 59, syd); + EXPECT_EQ(absl::InfiniteFuture(), t); + t = absl::FromDateTime( + std::numeric_limits<int64_t>::max(), 12, 31, 23, 59, 59, nyc); + EXPECT_EQ(absl::InfiniteFuture(), t); +} + +} // namespace |