summaryrefslogtreecommitdiff
path: root/absl/strings/internal/str_format/float_conversion.cc
diff options
context:
space:
mode:
authorGravatar Abseil Team <absl-team@google.com>2020-06-30 13:08:50 -0700
committerGravatar Derek Mauro <dmauro@google.com>2020-06-30 16:12:34 -0400
commit81f34df8347a73c617f244f49cb916238857dc34 (patch)
tree44d8278f3102055ab0c41059259bb3eacf112323 /absl/strings/internal/str_format/float_conversion.cc
parentb86fff162e15ad8ee534c25e58bf522330e8376d (diff)
Export of internal Abseil changes
-- 739f9fb80212c21c015fec473e9e29803a156ef9 by Derek Mauro <dmauro@google.com>: Define FlagStateInterface::~FlagStateInterface() in the translation unit in which it is actually declared Fixes #717 PiperOrigin-RevId: 319083605 -- 913ef1f23113268b22d636d3ae3b992862efdb1a by Derek Mauro <dmauro@google.com>: Fix ABSL_LOCK_RETURNED statement PiperOrigin-RevId: 319078667 -- a43b1413da1770d638147c73e7e1693cfaf869c7 by Derek Mauro <dmauro@google.com>: Fix redeclaration ‘absl::Cord::InlineRep::kMaxInline’, which differs in ‘constexpr’ Fixes #725 PiperOrigin-RevId: 319060910 -- 1ad7d491a80f6c9de78a6fc20f09b7765d224503 by Abseil Team <absl-team@google.com>: Make absl SpinLock trivially destructible when possible PiperOrigin-RevId: 319049456 -- 659ecad3578dfa669854a82279fa590002bdb37f by Derek Mauro <dmauro@google.com>: Remove the static initialization of global variables used by absl::Mutex as requested by Chromium PiperOrigin-RevId: 319031204 -- 609c491d8bb4f8bb3b44c5a4c0bee51c583df24c by Abseil Team <absl-team@google.com>: Add implementation of %a and %A to absl::StrFormat. Prior to this it just fell back to sprintf. PiperOrigin-RevId: 318888039 -- 5e8ae6392bcd135248aac14c4b9f2a5116868678 by Abseil Team <absl-team@google.com>: Google-internal changes only. PiperOrigin-RevId: 318857077 -- 4a2578e33e8442954e29e5f0380ddfcf0f033f0d by Greg Falcon <gfalcon@google.com>: Change of enum constants to accommodate internal change. PiperOrigin-RevId: 318844716 -- 4b578b102816260c213675759f4c15911735578a by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 318704453 -- 0ee82fd24d548b260c9229fa1f54571dae1dfa24 by Gennadiy Rozental <rogeeff@google.com>: Allow lookup of retired flags. At the moment we issue warning on attempt to find a retired flag. This way we can't even check if flag is retired without issuing the warning. With this change we will only issue the warning if one tries to access any functionality of retired flag but it's name "is retired" status, and type. PiperOrigin-RevId: 318605017 -- 3e35fe9b4c79f636fa328c59e2aabb93e29b7c99 by Abseil Team <absl-team@google.com>: Fix error return from InstallSymbolDecorator(). PiperOrigin-RevId: 318490405 -- ae46063f3eb2998cb961f62a359d932e5908a4bc by Abseil Team <absl-team@google.com>: Do not make copies of iterated collection elements into the loop variable. PiperOrigin-RevId: 318423139 -- d06a075a12aab5f6ab98474677ce50d588b21de3 by Abseil Team <absl-team@google.com>: add missing word making the error code better English PiperOrigin-RevId: 318335052 GitOrigin-RevId: 739f9fb80212c21c015fec473e9e29803a156ef9 Change-Id: Id77a0a4b1959036b00555deef40e82d51884fbc1
Diffstat (limited to 'absl/strings/internal/str_format/float_conversion.cc')
-rw-r--r--absl/strings/internal/str_format/float_conversion.cc281
1 files changed, 271 insertions, 10 deletions
diff --git a/absl/strings/internal/str_format/float_conversion.cc b/absl/strings/internal/str_format/float_conversion.cc
index 39fc5f60..6eb7b9fc 100644
--- a/absl/strings/internal/str_format/float_conversion.cc
+++ b/absl/strings/internal/str_format/float_conversion.cc
@@ -15,6 +15,7 @@
#include "absl/functional/function_ref.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/int128.h"
+#include "absl/strings/numbers.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
@@ -453,26 +454,31 @@ Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) {
}
}
-void FinalPrint(absl::string_view data, int trailing_zeros,
- const FormatState &state) {
+void FinalPrint(const FormatState &state, absl::string_view data,
+ int padding_offset, int trailing_zeros,
+ absl::string_view data_postfix) {
if (state.conv.width() < 0) {
// No width specified. Fast-path.
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
state.sink->Append(data);
state.sink->Append(trailing_zeros, '0');
+ state.sink->Append(data_postfix);
return;
}
- auto padding =
- ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + data.size() +
- static_cast<size_t>(trailing_zeros),
- state);
+ auto padding = ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) +
+ data.size() + data_postfix.size() +
+ static_cast<size_t>(trailing_zeros),
+ state);
state.sink->Append(padding.left_spaces, ' ');
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
+ // Padding in general needs to be inserted somewhere in the middle of `data`.
+ state.sink->Append(data.substr(0, padding_offset));
state.sink->Append(padding.zeros, '0');
- state.sink->Append(data);
+ state.sink->Append(data.substr(padding_offset));
state.sink->Append(trailing_zeros, '0');
+ state.sink->Append(data_postfix);
state.sink->Append(padding.right_spaces, ' ');
}
@@ -525,10 +531,11 @@ void FormatFFast(Int v, int exp, const FormatState &state) {
// In `alt` mode (flag #) we keep the `.` even if there are no fractional
// digits. In non-alt mode, we strip it.
if (!state.ShouldPrintDot()) --size;
- FinalPrint(absl::string_view(integral_digits_start, size),
+ FinalPrint(state, absl::string_view(integral_digits_start, size),
+ /*padding_offset=*/0,
static_cast<int>(state.precision - (fractional_digits_end -
fractional_digits_start)),
- state);
+ /*data_postfix=*/"");
}
// Slow %f formatter for when the shifted value does not fit in a uint128, and
@@ -655,6 +662,257 @@ void FormatF(Int mantissa, int exp, const FormatState &state) {
return FormatFFast(mantissa, exp, state);
}
+// Grab the group of four bits (nibble) from `n`. E.g., nibble 1 corresponds to
+// bits 4-7.
+template <typename Int>
+uint8_t GetNibble(Int n, int nibble_index) {
+ constexpr Int mask_low_nibble = Int{0xf};
+ int shift = nibble_index * 4;
+ n &= mask_low_nibble << shift;
+ return static_cast<uint8_t>((n >> shift) & 0xf);
+}
+
+// Add one to the given nibble, applying carry to higher nibbles. Returns true
+// if overflow, false otherwise.
+template <typename Int>
+bool IncrementNibble(int nibble_index, Int *n) {
+ constexpr int kShift = sizeof(Int) * 8 - 1;
+ constexpr int kNumNibbles = sizeof(Int) * 8 / 4;
+ Int before = *n >> kShift;
+ // Here we essentially want to take the number 1 and move it into the requsted
+ // nibble, then add it to *n to effectively increment the nibble. However,
+ // ASan will complain if we try to shift the 1 beyond the limits of the Int,
+ // i.e., if the nibble_index is out of range. So therefore we check for this
+ // and if we are out of range we just add 0 which leaves *n unchanged, which
+ // seems like the reasonable thing to do in that case.
+ *n +=
+ ((nibble_index * 4 >= sizeof(Int) * 8) ? 0
+ : (Int{1} << (nibble_index * 4)));
+ Int after = *n >> kShift;
+ return (before && !after) || (nibble_index >= kNumNibbles);
+}
+
+// Return a mask with 1's in the given nibble and all lower nibbles.
+template <typename Int>
+Int MaskUpToNibbleInclusive(int nibble_index) {
+ constexpr int kNumNibbles = sizeof(Int) * 8 / 4;
+ static const Int ones = ~Int{0};
+ return ones >> std::max(0, 4 * (kNumNibbles - nibble_index - 1));
+}
+
+// Return a mask with 1's below the given nibble.
+template <typename Int>
+Int MaskUpToNibbleExclusive(int nibble_index) {
+ return nibble_index <= 0 ? 0 : MaskUpToNibbleInclusive<Int>(nibble_index - 1);
+}
+
+template <typename Int>
+Int MoveToNibble(uint8_t nibble, int nibble_index) {
+ return Int{nibble} << (4 * nibble_index);
+}
+
+// Given mantissa size, find optimal # of mantissa bits to put in initial digit.
+//
+// In the hex representation we keep a single hex digit to the left of the dot.
+// However, the question as to how many bits of the mantissa should be put into
+// that hex digit in theory is arbitrary, but in practice it is optimal to
+// choose based on the size of the mantissa. E.g., for a `double`, there are 53
+// mantissa bits, so that means that we should put 1 bit to the left of the dot,
+// thereby leaving 52 bits to the right, which is evenly divisible by four and
+// thus all fractional digits represent actual precision. For a `long double`,
+// on the other hand, there are 64 bits of mantissa, thus we can use all four
+// bits for the initial hex digit and still have a number left over (60) that is
+// a multiple of four. Once again, the goal is to have all fractional digits
+// represent real precision.
+template <typename Float>
+constexpr int HexFloatLeadingDigitSizeInBits() {
+ return std::numeric_limits<Float>::digits % 4 > 0
+ ? std::numeric_limits<Float>::digits % 4
+ : 4;
+}
+
+// This function captures the rounding behavior of glibc for hex float
+// representations. E.g. when rounding 0x1.ab800000 to a precision of .2
+// ("%.2a") glibc will round up because it rounds toward the even number (since
+// 0xb is an odd number, it will round up to 0xc). However, when rounding at a
+// point that is not followed by 800000..., it disregards the parity and rounds
+// up if > 8 and rounds down if < 8.
+template <typename Int>
+bool HexFloatNeedsRoundUp(Int mantissa, int final_nibble_displayed) {
+ // If the last nibble (hex digit) to be displayed is the lowest on in the
+ // mantissa then that means that we don't have any further nibbles to inform
+ // rounding, so don't round.
+ if (final_nibble_displayed <= 0) {
+ return false;
+ }
+ int rounding_nibble_idx = final_nibble_displayed - 1;
+ constexpr int kTotalNibbles = sizeof(Int) * 8 / 4;
+ assert(final_nibble_displayed <= kTotalNibbles);
+ Int mantissa_up_to_rounding_nibble_inclusive =
+ mantissa & MaskUpToNibbleInclusive<Int>(rounding_nibble_idx);
+ Int eight = MoveToNibble<Int>(8, rounding_nibble_idx);
+ if (mantissa_up_to_rounding_nibble_inclusive != eight) {
+ return mantissa_up_to_rounding_nibble_inclusive > eight;
+ }
+ // Nibble in question == 8.
+ uint8_t should_round_at_8 =
+ (final_nibble_displayed >= kTotalNibbles)
+ ? true
+ : (GetNibble(mantissa, final_nibble_displayed) % 2 == 1);
+ return should_round_at_8;
+}
+
+// Stores values associated with a Float type needed by the FormatA
+// implementation in order to avoid templatizing that function by the Float
+// type.
+struct HexFloatTypeParams {
+ template <typename Float>
+ explicit HexFloatTypeParams(Float)
+ : min_exponent(std::numeric_limits<Float>::min_exponent - 1),
+ leading_digit_size_bits(HexFloatLeadingDigitSizeInBits<Float>()) {
+ assert(leading_digit_size_bits >= 1 && leading_digit_size_bits <= 4);
+ }
+
+ int min_exponent;
+ int leading_digit_size_bits;
+};
+
+// Hex Float Rounding. First check if we need to round; if so, then we do that
+// by manipulating (incrementing) the mantissa, that way we can later print the
+// mantissa digits by iterating through them in the same way regardless of
+// whether a rounding happened.
+template <typename Int>
+void FormatARound(bool precision_specified, const FormatState &state,
+ uint8_t *leading, Int *mantissa, int *exp) {
+ constexpr int kTotalNibbles = sizeof(Int) * 8 / 4;
+ // Index of the last nibble that we could display given precision.
+ int final_nibble_displayed =
+ precision_specified ? std::max(0, (kTotalNibbles - state.precision)) : 0;
+ if (HexFloatNeedsRoundUp(*mantissa, final_nibble_displayed)) {
+ // Need to round up.
+ bool overflow = IncrementNibble(final_nibble_displayed, mantissa);
+ *leading += (overflow ? 1 : 0);
+ if (ABSL_PREDICT_FALSE(*leading > 15)) {
+ // We have overflowed the leading digit. This would mean that we would
+ // need two hex digits to the left of the dot, which is not allowed. So
+ // adjust the mantissa and exponent so that the result is always 1.0eXXX.
+ *leading = 1;
+ *mantissa = 0;
+ *exp += 4;
+ }
+ }
+ // Now that we have handled a possible round-up we can go ahead and zero out
+ // all the nibbles of the mantissa that we won't need.
+ if (precision_specified) {
+ *mantissa &= ~MaskUpToNibbleExclusive<Int>(final_nibble_displayed);
+ }
+}
+
+template <typename Int>
+void FormatANormalize(const HexFloatTypeParams float_traits, uint8_t *leading,
+ Int *mantissa, int *exp) {
+ constexpr int kIntBits = sizeof(Int) * 8;
+ static const Int kHighIntBit = Int{1} << (kIntBits - 1);
+ const int kLeadDigitBitsCount = float_traits.leading_digit_size_bits;
+ // Normalize mantissa so that highest bit set is in MSB position, unless we
+ // get interrupted by the exponent threshold.
+ while (*mantissa && !(*mantissa & kHighIntBit)) {
+ if (ABSL_PREDICT_FALSE(*exp - 1 < float_traits.min_exponent)) {
+ *mantissa >>= (float_traits.min_exponent - *exp);
+ *exp = float_traits.min_exponent;
+ return;
+ }
+ *mantissa <<= 1;
+ --*exp;
+ }
+ // Extract bits for leading digit then shift them away leaving the
+ // fractional part.
+ *leading =
+ static_cast<uint8_t>(*mantissa >> (kIntBits - kLeadDigitBitsCount));
+ *exp -= (*mantissa != 0) ? kLeadDigitBitsCount : *exp;
+ *mantissa <<= kLeadDigitBitsCount;
+}
+
+template <typename Int>
+void FormatA(const HexFloatTypeParams float_traits, Int mantissa, int exp,
+ bool uppercase, const FormatState &state) {
+ // Int properties.
+ constexpr int kIntBits = sizeof(Int) * 8;
+ constexpr int kTotalNibbles = sizeof(Int) * 8 / 4;
+ // Did the user specify a precision explicitly?
+ const bool precision_specified = state.conv.precision() >= 0;
+
+ // ========== Normalize/Denormalize ==========
+ exp += kIntBits; // make all digits fractional digits.
+ // This holds the (up to four) bits of leading digit, i.e., the '1' in the
+ // number 0x1.e6fp+2. It's always > 0 unless number is zero or denormal.
+ uint8_t leading = 0;
+ FormatANormalize(float_traits, &leading, &mantissa, &exp);
+
+ // =============== Rounding ==================
+ // Check if we need to round; if so, then we do that by manipulating
+ // (incrementing) the mantissa before beginning to print characters.
+ FormatARound(precision_specified, state, &leading, &mantissa, &exp);
+
+ // ============= Format Result ===============
+ // This buffer holds the "0x1.ab1de3" portion of "0x1.ab1de3pe+2". Compute the
+ // size with long double which is the largest of the floats.
+ constexpr size_t kBufSizeForHexFloatRepr =
+ 2 // 0x
+ + std::numeric_limits<long double>::digits / 4 // number of hex digits
+ + 1 // round up
+ + 1; // "." (dot)
+ char digits_buffer[kBufSizeForHexFloatRepr];
+ char *digits_iter = digits_buffer;
+ const char *const digits =
+ static_cast<const char *>("0123456789ABCDEF0123456789abcdef") +
+ (uppercase ? 0 : 16);
+
+ // =============== Hex Prefix ================
+ *digits_iter++ = '0';
+ *digits_iter++ = uppercase ? 'X' : 'x';
+
+ // ========== Non-Fractional Digit ===========
+ *digits_iter++ = digits[leading];
+
+ // ================== Dot ====================
+ // There are three reasons we might need a dot. Keep in mind that, at this
+ // point, the mantissa holds only the fractional part.
+ if ((precision_specified && state.precision > 0) ||
+ (!precision_specified && mantissa > 0) || state.conv.has_alt_flag()) {
+ *digits_iter++ = '.';
+ }
+
+ // ============ Fractional Digits ============
+ int digits_emitted = 0;
+ while (mantissa > 0) {
+ *digits_iter++ = digits[GetNibble(mantissa, kTotalNibbles - 1)];
+ mantissa <<= 4;
+ ++digits_emitted;
+ }
+ int trailing_zeros =
+ precision_specified ? state.precision - digits_emitted : 0;
+ assert(trailing_zeros >= 0);
+ auto digits_result = string_view(digits_buffer, digits_iter - digits_buffer);
+
+ // =============== Exponent ==================
+ constexpr size_t kBufSizeForExpDecRepr =
+ numbers_internal::kFastToBufferSize // requred for FastIntToBuffer
+ + 1 // 'p' or 'P'
+ + 1; // '+' or '-'
+ char exp_buffer[kBufSizeForExpDecRepr];
+ exp_buffer[0] = uppercase ? 'P' : 'p';
+ exp_buffer[1] = exp >= 0 ? '+' : '-';
+ numbers_internal::FastIntToBuffer(exp < 0 ? -exp : exp, exp_buffer + 2);
+
+ // ============ Assemble Result ==============
+ FinalPrint(state, //
+ digits_result, // 0xN.NNN...
+ 2, // offset in `data` to start padding if needed.
+ trailing_zeros, // num remaining mantissa padding zeros
+ exp_buffer); // exponent
+}
+
char *CopyStringTo(absl::string_view v, char *out) {
std::memcpy(out, v.data(), v.size());
return out + v.size();
@@ -1103,7 +1361,10 @@ bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv,
}
} else if (c == FormatConversionCharInternal::a ||
c == FormatConversionCharInternal::A) {
- return FallbackToSnprintf(v, conv, sink);
+ bool uppercase = (c == FormatConversionCharInternal::A);
+ FormatA(HexFloatTypeParams(Float{}), decomposed.mantissa,
+ decomposed.exponent, uppercase, {sign_char, precision, conv, sink});
+ return true;
} else {
return false;
}